论文标题
评估解释器:MOOC中学生成功预测的黑箱可解释的机器学习
Evaluating the Explainers: Black-Box Explainable Machine Learning for Student Success Prediction in MOOCs
论文作者
论文摘要
神经网络无处不在用于教育的应用机器学习。他们在预测性能方面的普遍成功伴随着严重的弱点,他们的决策缺乏解释性,尤其是在以人为本的领域中。我们实施了五种最先进的方法,用于解释黑盒机器学习模型(Lime,PermiputationShap,kernelshap,dice,CEM),并检查每种方法的优势在五个大型开放在线课程的学生绩效预测的下游任务上。我们的实验表明,解释者的家属在与同一代表性学生集的同一双向LSTM模型中相互重要性不同意。我们使用主成分分析,Jensen-Shannon距离以及Spearman的等级相关性,用于跨方法和课程的定量盘问解释。此外,我们验证了基于课程的先决条件之间的解释性绩效。我们的结果得出的结论是,解释器的选择是一个重要的决定,实际上对于预测结果的解释至关重要,甚至比对模型的课程进行的更重要。源代码和模型在http://github.com/epfl-ml4ed/evaluating-explainers上发布。
Neural networks are ubiquitous in applied machine learning for education. Their pervasive success in predictive performance comes alongside a severe weakness, the lack of explainability of their decisions, especially relevant in human-centric fields. We implement five state-of-the-art methodologies for explaining black-box machine learning models (LIME, PermutationSHAP, KernelSHAP, DiCE, CEM) and examine the strengths of each approach on the downstream task of student performance prediction for five massive open online courses. Our experiments demonstrate that the families of explainers do not agree with each other on feature importance for the same Bidirectional LSTM models with the same representative set of students. We use Principal Component Analysis, Jensen-Shannon distance, and Spearman's rank-order correlation to quantitatively cross-examine explanations across methods and courses. Furthermore, we validate explainer performance across curriculum-based prerequisite relationships. Our results come to the concerning conclusion that the choice of explainer is an important decision and is in fact paramount to the interpretation of the predictive results, even more so than the course the model is trained on. Source code and models are released at http://github.com/epfl-ml4ed/evaluating-explainers.