论文标题

深度学习和符号回归,以发现参数方程

Deep Learning and Symbolic Regression for Discovering Parametric Equations

论文作者

Zhang, Michael, Kim, Samuel, Lu, Peter Y., Soljačić, Marin

论文摘要

符号回归是一种机器学习技术,可以学习数据的管理公式,因此有可能改变科学发现。但是,符号回归仍然受到分析系统的复杂性和维度的限制。另一方面,深度学习改变了机器学习的能力,可以分析极其复杂和高维数据集。我们提出了一个神经网络体系结构,以将符号回归扩展到参数系统,其中某些系数可能会有所不同,但是基础管理方程的结构仍然恒定。我们演示了有关各种系数的各种分析表达式,ODE和PDE的方法,并表明它可以很好地推断出训练域之外。基于神经网络的体系结构还可以与其他深度学习体系结构集成,因此它可以在端到端训练的同时分析高维数据。为此,我们将架构与卷积神经网络集成在一起,以分析不同弹簧系统的1D图像。

Symbolic regression is a machine learning technique that can learn the governing formulas of data and thus has the potential to transform scientific discovery. However, symbolic regression is still limited in the complexity and dimensionality of the systems that it can analyze. Deep learning on the other hand has transformed machine learning in its ability to analyze extremely complex and high-dimensional datasets. We propose a neural network architecture to extend symbolic regression to parametric systems where some coefficient may vary but the structure of the underlying governing equation remains constant. We demonstrate our method on various analytic expressions, ODEs, and PDEs with varying coefficients and show that it extrapolates well outside of the training domain. The neural network-based architecture can also integrate with other deep learning architectures so that it can analyze high-dimensional data while being trained end-to-end. To this end we integrate our architecture with convolutional neural networks to analyze 1D images of varying spring systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源