论文标题
竞争性在线射击游戏中的行为玩家评分
Behavioral Player Rating in Competitive Online Shooter Games
论文作者
论文摘要
竞争性在线游戏使用评分系统进行对接;基于进步的算法可以根据他们玩游戏的结果来估计具有可解释评分的玩家的技能水平。但是,玩家的总体体验是由超出其游戏唯一结果的因素来影响的。在本文中,我们设计了从游戏内统计信息到模拟玩家的几个功能,并创建了准确代表其行为和真实绩效水平的评分。然后,我们将行为评级的估计能力与通过三个主流评分系统创建的评级的估计能力进行了比较,通过预测竞争性射击游戏类型的四种流行游戏模式中的玩家等级。我们的结果表明,行为等级在维持创建表示形式的解释性的同时提出了更准确的绩效估计。考虑玩家的演奏行为的不同方面并使用行为等级进行对接可能会导致对决,这些比赛与玩家的目标和兴趣更加一致,因此导致了更愉快的游戏体验。
Competitive online games use rating systems for matchmaking; progression-based algorithms that estimate the skill level of players with interpretable ratings in terms of the outcome of the games they played. However, the overall experience of players is shaped by factors beyond the sole outcome of their games. In this paper, we engineer several features from in-game statistics to model players and create ratings that accurately represent their behavior and true performance level. We then compare the estimating power of our behavioral ratings against ratings created with three mainstream rating systems by predicting rank of players in four popular game modes from the competitive shooter genre. Our results show that the behavioral ratings present more accurate performance estimations while maintaining the interpretability of the created representations. Considering different aspects of the playing behavior of players and using behavioral ratings for matchmaking can lead to match-ups that are more aligned with players' goals and interests, consequently resulting in a more enjoyable gaming experience.