论文标题
黄金的平移:从平台不足的自动检测中从文本数据中汲取的经验教训
Panning for gold: Lessons learned from the platform-agnostic automated detection of political content in textual data
论文作者
论文摘要
有关在线信息行为的数据的日益增长的可用性为政治传播研究带来了新的可能性。但是,这些数据的数量和多样性使它们难以分析,并提示需要开发自动化内容方法,这些方法依赖于广泛的自然语言处理技术(例如,基于机器或基于神经网络)。在本文中,我们讨论如何使用这些技术来检测不同平台的政治内容。我们使用三个验证数据集,其中包括来自在线平台的各种政治和非政治文本文档,我们系统地比较了依赖词典,监督机器学习或神经网络的三组检测技术的性能。我们还使用大型检测模型的大集合(n = 66)研究了不同数据预处理模式(例如,驱动和停止词)对这些技术的低成本实现的影响。我们的结果表明,预处理对模型性能的影响有限,与基于神经网络和机器学习的模型相比,基于嘈杂的数据对基于词典的模型的更强性能相比,基于神经网络和基于机器学习的模型的最佳结果。
The growing availability of data about online information behaviour enables new possibilities for political communication research. However, the volume and variety of these data makes them difficult to analyse and prompts the need for developing automated content approaches relying on a broad range of natural language processing techniques (e.g. machine learning- or neural network-based ones). In this paper, we discuss how these techniques can be used to detect political content across different platforms. Using three validation datasets, which include a variety of political and non-political textual documents from online platforms, we systematically compare the performance of three groups of detection techniques relying on dictionaries, supervised machine learning, or neural networks. We also examine the impact of different modes of data preprocessing (e.g. stemming and stopword removal) on the low-cost implementations of these techniques using a large set (n = 66) of detection models. Our results show the limited impact of preprocessing on model performance, with the best results for less noisy data being achieved by neural network- and machine-learning-based models, in contrast to the more robust performance of dictionary-based models on noisy data.