论文标题

用于零射击学习的典型逻辑张量网络(原始LTN)

PROTOtypical Logic Tensor Networks (PROTO-LTN) for Zero Shot Learning

论文作者

Martone, Simone, Manigrasso, Francesco, Fabrizio, Lamberti, Morra, Lia

论文摘要

语义图像解释可以通过将亚符号分布式表示学习与更高抽象级别推理的能力相结合的方法极大地受益。逻辑张量网络(LTN)是一类神经符号系统,基于基于深度神经网络的可区分的一阶逻辑。 LTN用模糊逻辑公理的知识库代替了经典的训练集概念。通过定义一组可区分的操作员来近似连接,谓词,功能和量词的作用,可以自动指定损失函数,以便LTN可以学会满足知识库。我们将重点放在集合或\ texttt {isofClass}谓词上,这对于编码大多数语义图像解释任务至关重要。与传统的LTN不同,该LTN依靠每个类别的单独谓词(例如,狗,猫),每个类别都有自己的可学习权重,我们提出了一个常见的\ texttt {isofClass}谓语,其真理的水平是嵌入对象嵌入和相应类原型之间的距离的函数。原型逻辑张量网络(Proto-LTN)通过将抽象概念作为参数化的类原型将当前公式扩展到高维嵌入空间中,同时减少了将知识基础扎根所需的参数数量。我们展示了如何在少数和零拍的学习方案中有效培训这种体系结构。对广义零射击学习基准的实验验证了拟议的实现,作为基于传统嵌入方法的竞争替代方法。提议的配方为零镜头学习设置打开了新的机会,因为LTN形式主义允许以逻辑公理的形式整合背景知识,以弥补缺乏标记的示例。

Semantic image interpretation can vastly benefit from approaches that combine sub-symbolic distributed representation learning with the capability to reason at a higher level of abstraction. Logic Tensor Networks (LTNs) are a class of neuro-symbolic systems based on a differentiable, first-order logic grounded into a deep neural network. LTNs replace the classical concept of training set with a knowledge base of fuzzy logical axioms. By defining a set of differentiable operators to approximate the role of connectives, predicates, functions and quantifiers, a loss function is automatically specified so that LTNs can learn to satisfy the knowledge base. We focus here on the subsumption or \texttt{isOfClass} predicate, which is fundamental to encode most semantic image interpretation tasks. Unlike conventional LTNs, which rely on a separate predicate for each class (e.g., dog, cat), each with its own set of learnable weights, we propose a common \texttt{isOfClass} predicate, whose level of truth is a function of the distance between an object embedding and the corresponding class prototype. The PROTOtypical Logic Tensor Networks (PROTO-LTN) extend the current formulation by grounding abstract concepts as parametrized class prototypes in a high-dimensional embedding space, while reducing the number of parameters required to ground the knowledge base. We show how this architecture can be effectively trained in the few and zero-shot learning scenarios. Experiments on Generalized Zero Shot Learning benchmarks validate the proposed implementation as a competitive alternative to traditional embedding-based approaches. The proposed formulation opens up new opportunities in zero shot learning settings, as the LTN formalism allows to integrate background knowledge in the form of logical axioms to compensate for the lack of labelled examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源