论文标题

6G中的AI:多层异构网络的节能分布式机器学习

AI in 6G: Energy-Efficient Distributed Machine Learning for Multilayer Heterogeneous Networks

论文作者

Hossain, Mohammad Arif, Hossain, Abdullah Ridwan, Ansari, Nirwan

论文摘要

熟练的网络管理是支持具有严格服务质量(QoS)要求的极异构应用程序的关键;当设想复杂而超密集的6G移动异质网络(HETNET)时,更是如此。从环境和经济的角度来看,非均匀的QoS要求妨碍了能源足迹的最小化和设想的强大网络的运营成本。因此,预计网络智能将在实现这种复杂目标的实现中发挥重要作用。人工智能(AI)和移动网络的融合将允许网络功能的动态和自动配置。机器学习(ML)是AI的骨干之一,将有助于预测网络负载和资源利用率的变化,估算渠道条件,优化网络切片以及增强安全性和加密。但是,众所周知,ML任务本身会产生巨大的计算负担和能源成本。为了克服此类障碍,我们提出了一种基于层的新型HETNET体系结构,该架构最佳地分布了与网络层和实体之间不同ML方法相关联的任务;这样的HETNET拥有多个访问方案以及设备对设备(D2D)通信,以通过协作学习和沟通提高能源效率。

Adept network management is key for supporting extremely heterogeneous applications with stringent quality of service (QoS) requirements; this is more so when envisioning the complex and ultra-dense 6G mobile heterogeneous network (HetNet). From both the environmental and economical perspectives, non-homogeneous QoS demands obstruct the minimization of the energy footprints and operational costs of the envisioned robust networks. As such, network intelligentization is expected to play an essential role in the realization of such sophisticated aims. The fusion of artificial intelligence (AI) and mobile networks will allow for the dynamic and automatic configuration of network functionalities. Machine learning (ML), one of the backbones of AI, will be instrumental in forecasting changes in network loads and resource utilization, estimating channel conditions, optimizing network slicing, and enhancing security and encryption. However, it is well known that ML tasks themselves incur massive computational burdens and energy costs. To overcome such obstacles, we propose a novel layer-based HetNet architecture which optimally distributes tasks associated with different ML approaches across network layers and entities; such a HetNet boasts multiple access schemes as well as device-to-device (D2D) communications to enhance energy efficiency via collaborative learning and communications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源