论文标题

WNET:具有可训练的重建层的稀疏视图计算机断层扫描的数据驱动的双域denoising模型

WNet: A data-driven dual-domain denoising model for sparse-view computed tomography with a trainable reconstruction layer

论文作者

Cheslerean-Boghiu, Theodor, Hofmann, Felix C., Schultheiß, Manuel, Pfeiffer, Franz, Pfeiffer, Daniela, Lasser, Tobias

论文摘要

基于深度学习的解决方案正在为各种应用程序成功实施。最值得注意的是,临床用例已经增加了兴趣,并且是过去几年提出的一些尖端数据驱动算法背后的主要驱动力。对于诸如稀疏视图重建的应用,其中的测量数据量很少,以使获取时间短而且辐射剂量较低,降低了串联的伪像的降低,促使数据驱动的Denotien denotien denotion denotion denotion denotive算法的主要目标是仅获得具有完整数据子集的诊断图像的主要目标。我们提出了WNET,这是一个数据驱动的双域denoising模型,该模型包含用于稀疏视图的可训练的重建层。两个编码器 - 码头网络同时在曲构和重建域中执行deNOTO,而实施过滤后的反向注射算法的第三层则夹在前两个之间,并照顾重建操作。我们研究了网络在稀疏视图胸部CT扫描上的性能,并重点介绍了更传统的固定层具有可训练的重建层的附加优势。我们在两个临床相关的数据集上训练和测试我们的网络,并将获得的结果与三种不同类型的稀疏视图CT CT Denoisis和重建算法进行了比较。

Deep learning based solutions are being succesfully implemented for a wide variety of applications. Most notably, clinical use-cases have gained an increased interest and have been the main driver behind some of the cutting-edge data-driven algorithms proposed in the last years. For applications like sparse-view tomographic reconstructions, where the amount of measurement data is small in order to keep acquisition time short and radiation dose low, reduction of the streaking artifacts has prompted the development of data-driven denoising algorithms with the main goal of obtaining diagnostically viable images with only a subset of a full-scan data. We propose WNet, a data-driven dual-domain denoising model which contains a trainable reconstruction layer for sparse-view artifact denoising. Two encoder-decoder networks perform denoising in both sinogram- and reconstruction-domain simultaneously, while a third layer implementing the Filtered Backprojection algorithm is sandwiched between the first two and takes care of the reconstruction operation. We investigate the performance of the network on sparse-view chest CT scans, and we highlight the added benefit of having a trainable reconstruction layer over the more conventional fixed ones. We train and test our network on two clinically relevant datasets and we compare the obtained results with three different types of sparse-view CT denoising and reconstruction algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源