论文标题
高维数据中离群值检测的几何框架
A geometric framework for outlier detection in high-dimensional data
论文作者
论文摘要
异常检测或异常检测是数据分析中的重要任务。我们从几何学角度讨论问题,并提供一个框架来利用数据集的度量结构。我们的方法取决于多种假设,即,所观察到的名义上高维数据位于较低的维歧管上,并且可以通过多种学习方法来推断这种内在结构。我们表明,利用这种结构可显着改善高维数据中外围观测值的检测。我们还基于数据歧管的几何形状和拓扑结构,在数学上精确,精确且广泛适用的区别在数学上精确且广泛适用的区分,我们还建议一种新颖的概念歧义,我们在数学上精确且广泛地适用于分布和结构异常值,从而阐明了一种新颖的区分,阐明了整个文献中普遍普遍存在的概念上的歧义,我们在数学上精确且广泛地适用于分布和结构异常值,从而提出了一种新颖的概念歧义。我们的实验将功能数据集中在一类结构化的高维数据上,但是我们提出的框架是完全一般的,我们包括图像和图形数据应用程序。我们的结果表明,可以使用歧管学习方法检测和可视化高维和非尾数据的离群结构,并使用应用于歧管嵌入向量的标准离群评分方法进行量化。
Outlier or anomaly detection is an important task in data analysis. We discuss the problem from a geometrical perspective and provide a framework that exploits the metric structure of a data set. Our approach rests on the manifold assumption, i.e., that the observed, nominally high-dimensional data lie on a much lower dimensional manifold and that this intrinsic structure can be inferred with manifold learning methods. We show that exploiting this structure significantly improves the detection of outlying observations in high-dimensional data. We also suggest a novel, mathematically precise, and widely applicable distinction between distributional and structural outliers based on the geometry and topology of the data manifold that clarifies conceptual ambiguities prevalent throughout the literature. Our experiments focus on functional data as one class of structured high-dimensional data, but the framework we propose is completely general and we include image and graph data applications. Our results show that the outlier structure of high-dimensional and non-tabular data can be detected and visualized using manifold learning methods and quantified using standard outlier scoring methods applied to the manifold embedding vectors.