论文标题

Fröhlich-Type Polaron模型的高通量分析

High-throughput analysis of Fröhlich-type polaron models

论文作者

de Melo, Pedro Miguel M. C., de Abreu, Joao C., Guster, Bogdan, Giantomassi, Matteo, Zanolli, Zeila, Gonze, Xavier, Verstraete, Matthieu J.

论文摘要

凝结物质的电子结构可能会受到电子 - 光子相互作用的显着影响,从而导致重要现象,例如电阻,超导性或极性形成。这种相互作用通常在频带结构计算中被忽略,但可能会对带隙或光谱产生强大的影响。电子 - phonon能量校正的常用框架是Allen-Heine-Cardona理论和Fröhlich模型。尽管后者与许多极性材料的实验显示了定性协议,但其简单性应为其在真实材料中的适用性带来严格的限制。可以通过引入通用版本的模型来进行改进,该模型考虑了各向异性和退化电子带和多个声子分支。在这项工作中,我们在声子和电子带结构的现有数据库中搜索了一千多个材料的趋势和离群值。我们使用结果来通过比较广义版本来识别标准Frölich模型的适用性,并通过测试其对极性波函数的较大半径的基本假设和相应的原子位移云。在我们的扩展材料集中,大多数表现出巨大的二极管行为以及扰动治疗的有效性。对于价带,也有很大一部分无法应用扰动处理的材料和/或自捕捞区域的大小接近原子重复距离的材料。我们发现各种各样的行为,并采用更准确的,完全不可用的allen-heine-cardona计算来了解极端情况,而Fröhlich模型应失败,并且出现异常大的零点重归化能量。

The electronic structure of condensed matter can be significantly affected by the electron-phonon interaction, leading to important phenomena such as electrical resistance, superconductivity or the formation of polarons. This interaction is often neglected in band structure calculations but can have a strong impact on band gaps or optical spectra. Commonly used frameworks for electron-phonon energy corrections are the Allen-Heine-Cardona theory and the Fröhlich model. While the latter shows qualitative agreement with experiment for many polar materials, its simplicity should bring hard limits to its applicability in real materials. Improvements can be made by introducing a generalized version of the model, which considers anisotropic and degenerate electronic bands, and multiple phonon branches. In this work, we search for trends and outliers on over a thousand materials in existing databases of phonon and electron band structures. We use our results to identify the limits of applicability of the standard Frölich model by comparing to the generalized version, and by testing its basic hypothesis of a large radius for the polaronic wavefunction and the corresponding atomic displacement cloud. Among our extended set of materials, most exhibit large polaron behavior as well as validity of the perturbative treatment. For the valence band, there is also a significant fraction of the materials for which the perturbative treatment cannot be applied and/or for which the size of the self-trapping region is close to the atomic repetition distance. We find a large variety of behaviors, and employ much more accurate, fully ab initio Allen-Heine-Cardona calculations to understand extreme cases, where the Fröhlich model should fail and unusually large zero-point renormalization energies occur.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源