论文标题

本地流形学习及其与基于领域的物理知识的联系

Local manifold learning and its link to domain-based physics knowledge

论文作者

Zdybał, Kamila, D'Alessio, Giuseppe, Attili, Antonio, Coussement, Axel, Sutherland, James C., Parente, Alessandro

论文摘要

在许多反应流系统中,已知或假定热化学状态空间与低维歧管(LDM)相近。可以使用各种方法来获取这些歧管,并随后表达具有更少参数化变量的原始高维空间。主成分分析(PCA)是可用于获得LDM的维度降低方法之一。 PCA没有对参数化变量做出事先假设,并从训练数据中凭经验检索它们。在本文中,我们表明将PCA应用于局部数据簇(本地PCA)能够检测热化学状态空间的内在参数化。我们首先证明,使用三种不同复杂性的常见燃烧模型:Burke-Schumann模型,化学平衡模型和均匀反应器。这些模型的参数化已知先验,可以通过本地PCA方法进行基准测试。我们进一步将本地PCA的应用扩展到更具挑战性的案例,即湍流的非原型$ n $ heptane/air喷气火焰不再显而易见。我们的结果表明,对于更复杂的数据集也可以获得有意义的参数化。我们表明,局部PCA找到可以链接到局部化学计量,反应进度和烟灰形成过程的变量。

In many reacting flow systems, the thermo-chemical state-space is known or assumed to evolve close to a low-dimensional manifold (LDM). Various approaches are available to obtain those manifolds and subsequently express the original high-dimensional space with fewer parameterizing variables. Principal component analysis (PCA) is one of the dimensionality reduction methods that can be used to obtain LDMs. PCA does not make prior assumptions about the parameterizing variables and retrieves them empirically from the training data. In this paper, we show that PCA applied in local clusters of data (local PCA) is capable of detecting the intrinsic parameterization of the thermo-chemical state-space. We first demonstrate that utilizing three common combustion models of varying complexity: the Burke-Schumann model, the chemical equilibrium model and the homogeneous reactor. Parameterization of these models is known a priori which allows for benchmarking with the local PCA approach. We further extend the application of local PCA to a more challenging case of a turbulent non-premixed $n$-heptane/air jet flame for which the parameterization is no longer obvious. Our results suggest that meaningful parameterization can be obtained also for more complex datasets. We show that local PCA finds variables that can be linked to local stoichiometry, reaction progress and soot formation processes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源