论文标题

嘈杂的中间量子计算机上的相互作用能

Interaction Energies on Noisy Intermediate-Scale Quantum Computers

论文作者

Loipersberger, Matthias, Malone, Fionn D., Welden, Alicia R., Parrish, Robert M., Fox, Thomas, Degroote, Matthias, Kyoseva, Elica, Moll, Nikolaj, Santagati, Raffaele, Streif, Michael

论文摘要

通过直接应用现有量子算法的直接应用,嘈杂的中间量子量子(NISQ)计算机上相互作用能量的计算似乎具有挑战性。例如,将标准的超分子方法与变异量子质量(VQE)一起使用,将需要非常精确的片段总能量分辨率,以使相互作用能量准确地减法。在这里,我们提出了一种适应对称性的扰动理论(SAPT)方法,该方法可能提供具有高量子资源效率的相互作用能。特别要注意的是,我们提出了SAPT二阶诱导和分散项(包括交换对应物)的量子扩展随机相近似(ERPA)处理。与以前的一阶术语工作一起,这提供了完整SAPT(VQE)交互能量的配方。 SAPT相互作用的能量项计算为第一级可观测值,而单体能量没有减去单体能量,唯一需要的量子观察结果是VQE单粒子密度矩阵。我们从经验上发现,即使通过从理想的状态向量器模拟的量子计算机中,SAPT(VQE)也可以提供精确的相互作用能量。总相互作用能量的误差比单体波函数的相应VQE总能量误差低的数量级。

The computation of interaction energies on noisy intermediate-scale quantum (NISQ) computers appears to be challenging with straightforward application of existing quantum algorithms. For example, use of the standard supermolecular method with the variational quantum eigensolver (VQE) would require extremely precise resolution of the total energies of the fragments to provide for accurate subtraction to the interaction energy. Here we present a symmetry-adapted perturbation theory (SAPT) method that may provide interaction energies with high quantum resource efficiency. Of particular note, we present a quantum extended random-phase approximation (ERPA) treatment of the SAPT second-order induction and dispersion terms, including exchange counterparts. Together with previous work on first-order terms, this provides a recipe for complete SAPT(VQE) interaction energies up to second order. The SAPT interaction energy terms are computed as first-level observables with no subtraction of monomer energies invoked, and the only quantum observations needed are the the VQE one- and two-particle density matrices. We find empirically that SAPT(VQE) can provide accurate interaction energies even with coarsely optimized, low circuit depth wavefunctions from the quantum computer, simulated through ideal statevectors. The errors on the total interaction energy are orders of magnitude lower than the corresponding VQE total energy errors of the monomer wavefunctions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源