论文标题
从连续词典中学习混合物的网格学习
Off-the-grid learning of mixtures from a continuous dictionary
论文作者
论文摘要
我们考虑了一个通用的非线性模型,其中信号是未知(可能增加的,可能增加的特征数量)的有限混合物,该特征是由由真实的非线性参数进行参数的连续字典发出的。在连续设置或离散设置中使用高斯(可能相关)噪声观察信号。我们提出了一种网格优化方法,即一种未在参数空间上使用任何离散化方案的方法来估算特征的非线性参数和混合物的线性参数。我们使用有关离网方法的几何形状的最新结果,在真实的潜在非线性参数上给出最小的分离,以便可以构建插值证书函数。还使用尾部界限用于高斯过程的上部,我们将预测误差限制在很高的概率上。假设可以构建证书函数,我们的预测错误限制为$ \ log $ factor,类似于线性回归模型中Lasso预测器所获得的速率。我们还建立了收敛速率,以高概率量化线性和非线性参数的估计质量。我们全面开发了两个应用程序的主要结果:高斯尖峰反卷积和缩放指数模型。
We consider a general non-linear model where the signal is a finite mixture of an unknown, possibly increasing, number of features issued from a continuous dictionary parameterized by a real non-linear parameter. The signal is observed with Gaussian (possibly correlated) noise in either a continuous or a discrete setup. We propose an off-the-grid optimization method, that is, a method which does not use any discretization scheme on the parameter space, to estimate both the non-linear parameters of the features and the linear parameters of the mixture. We use recent results on the geometry of off-the-grid methods to give minimal separation on the true underlying non-linear parameters such that interpolating certificate functions can be constructed. Using also tail bounds for suprema of Gaussian processes we bound the prediction error with high probability. Assuming that the certificate functions can be constructed, our prediction error bound is up to $\log$-factors similar to the rates attained by the Lasso predictor in the linear regression model. We also establish convergence rates that quantify with high probability the quality of estimation for both the linear and the non-linear parameters. We develop in full details our main results for two applications: the Gaussian spike deconvolution and the scaled exponential model.