论文标题
卫星图像数据下行链路调度问题的自适应双目标优化算法考虑请求拆分
An adaptive bi-objective optimization algorithm for the satellite image data downlink scheduling problem considering request split
论文作者
论文摘要
卫星图像数据下行链路调度问题(SIDSP)在传统卫星的文献中进行了很好的研究。随着卫星技术的最新发展,现代卫星的SIDSP变得更加复杂,增加了复杂性的新维度和有效使用卫星的其他机会。在本文中,我们介绍了动态的两相卫星图像数据下行链路调度问题(D-SIDSP),该问题结合了图像数据分割和图像数据下链路的两个相互链接操作,以动态方式,从而提供其他建模的灵活性和更新的功能。 D-SIDSP被配制为优化图像数据传输速率和服务余额度的双目标问题。利用自适应的大型邻里搜索算法(ALNS)的功能,具有非主导的分类遗传算法II(NSGA-II),一种自适应的双向模因算法,ALNS+NSGA-II,开发为求解D-Sidsp。还提出了使用基准实例进行的广泛计算实验的结果。我们的实验结果揭示了算法ALNS+NSGA-II是更有效地求解D-SIDSP的可行替代方法,并根据各种性能指标展示了卓越的结果。该论文还为D-SIDSP提供了新的基准实例,可用于该主题的未来研究工作。
The satellite image data downlink scheduling problem (SIDSP) is well studied in literature for traditional satellites. With recent developments in satellite technology, SIDSP for modern satellites became more complicated, adding new dimensions of complexities and additional opportunities for the effective use of the satellite. In this paper, we introduce the dynamic two-phase satellite image data downlink scheduling problem (D-SIDSP) which combines two interlinked operations of image data segmentation and image data downlink, in a dynamic way, and thereby offering additional modelling flexibility and renewed capabilities. D-SIDSP is formulated as a bi-objective problem of optimizing the image data transmission rate and the service-balance degree. Harnessing the power of an adaptive large neighborhood search algorithm (ALNS) with a nondominated sorting genetic algorithm II (NSGA-II), an adaptive bi-objective memetic algorithm, ALNS+NSGA-II, is developed to solve D-SIDSP. Results of extensive computational experiments carried out using benchmark instances are also presented. Our experimental results disclose that the algorithm ALNS+NSGA-II is a viable alternative to solve D-SIDSP more efficiently and demonstrates superior outcomes based on various performance metrics. The paper also offers new benchmark instances for D-SIDSP that can be used in future research works on the topic.