论文标题
6G智能电网中的能源需求管理资源分配方案
A Resource Allocation Scheme for Energy Demand Management in 6G-enabled Smart Grid
论文作者
论文摘要
智能电网(SG)系统可以增强网格弹性和有效的操作,利用发电设施和制作者之间的能源和信息的双向流。对于能源需求管理(EDM),SG网络需要计算大量由大量的数据传感器和高级计量基础架构(AMI)生成的数据,并且延迟最小。本文建议在启用6G的SG Edge网络中进行基于深入的增强学习(DRL)的资源分配方案,以卸载资源消费的EDM计算以换取Edge服务器。自动资源配置是通过利用动态边缘网络中智能电表的计算能力来实现的。为了在密集的6G网络中执行DRL辅助策略,需要来自多个边缘服务器的状态信息。但是,对手可以通过错误的状态注入(FSI)攻击“毒化”此类信息,从而耗尽SG边缘计算资源。为了解决这个问题,我们研究了这种FSI攻击对边缘资源利用的影响,并根据监督分类器开发轻巧的FSI检测机制。仿真结果证明了DRL在动态资源分配中的功效,FSI攻击的影响以及检测技术的有效性。
Smart grid (SG) systems enhance grid resilience and efficient operation, leveraging the bidirectional flow of energy and information between generation facilities and prosumers. For energy demand management (EDM), the SG network requires computing a large amount of data generated by massive Internet-of-things sensors and advanced metering infrastructure (AMI) with minimal latency. This paper proposes a deep reinforcement learning (DRL)-based resource allocation scheme in a 6G-enabled SG edge network to offload resource-consuming EDM computation to edge servers. Automatic resource provisioning is achieved by harnessing the computational capabilities of smart meters in the dynamic edge network. To enforce DRL-assisted policies in dense 6G networks, the state information from multiple edge servers is required. However, adversaries can "poison" such information through false state injection (FSI) attacks, exhausting SG edge computing resources. Toward addressing this issue, we investigate the impact of such FSI attacks with respect to abusive utilization of edge resources, and develop a lightweight FSI detection mechanism based on supervised classifiers. Simulation results demonstrate the efficacy of DRL in dynamic resource allocation, the impact of the FSI attacks, and the effectiveness of the detection technique.