论文标题
拓扑材料中的非形态对称性对称性受保护的狄拉克,莫比乌斯和沙漏费米子
Nonsymmorphic Symmetry Protected Dirac, Möbius, and Hourglass Fermions in Topological Materials
论文作者
论文摘要
如果将点组对称性与分数晶格翻译相结合,则定义了晶格对称性,如果是不形式的,则无法通过更改晶格起源来消除。非词形对称性对固态量子材料中电子带结构的连通性和拓扑特性都有很大的影响。在本文中,我们回顾了非词性晶体对称性如何驱动并进一步保护异国情调的费米子准粒子的出现,包括迪拉克,莫比乌斯和沙漏费米子,这表现为具有多数的无间隙或大量拓扑阶段的定义能量带签名。我们首先提供了晶体固体中能带交叉的分类,重点是对称性的带状横梁,具有非形态对称性的起源。特别是,我们将讨论四种不同类别的非对称性保护拓扑状态及其标志性费米模式:(1)A $ Z_2 $拓扑非拓扑非甲状腺晶状体绝缘子,带有二维表面dirac费米子; (2)狄拉克半学,带有三维散装状态的dirac节点,固定在某些高对称臂上; (3)具有无质量表面模式的拓扑莫比乌斯绝缘子,类似于möbius扭曲的拓扑结构(称为莫比乌斯·费米子); (4)带有沙漏形的无质表面状态的Möbius绝缘子的时间反向不变版本(称为沙漏费米子)。上述异国情调问题的出现完美地证明了对称性和拓扑在理解量子材料的五颜六色世界中的关键作用。
A lattice symmetry, if being nonsymmorphic, is defined by combining a point group symmetry with a fractional lattice translation that cannot be removed by changing the lattice origin. Nonsymmorphic symmetry has a substantial influence on both the connectivity and topological properties of electronic band structures in solid-state quantum materials. In this article, we review how nonsymmorphic crystalline symmetries can drive and further protect the emergence of exotic fermionic quasiparticles, including Dirac, Möbius and hourglass fermions, that manifest as the defining energy band signatures for a plethora of gapless or gapped topological phases of matter. We first provide a classification of energy band crossings in crystalline solids, with an emphasis on symmetry-enforced band crossings that feature a nonsymmorphic-symmetry origin. In particular, we will discuss four distinct classes of nonsymmorphic-symmetry-protected topological states as well as their signature fermionic modes: (1) a $Z_2$ topological nonsymmorphic crystalline insulator with two-dimensional surface Dirac fermions; (2) a Dirac semimetal with three dimensional bulk-state Dirac nodes pinned at certain high symmetry momenta; (3) a topological Möbius insulator with massless surface modes that resemble the topological structure of a Möbius twist (dubbed as Möbius fermions); (4) a time-reversal-invariant version of Möbius insulators with hourglass-shaped massless surface states (dubbed as hourglass fermions). The emergence of the above exotic topological matter perfectly demonstrates the crucial roles of both symmetry and topology in understanding the colorful world of quantum materials.