论文标题

添加剂主和乘法互动效应模型的变异推断

Variational Inference for Additive Main and Multiplicative Interaction Effects Models

论文作者

Santos, AntÔnia A. L. Dos, Moral, Rafael A., Sarti, Danilo A., Parnell, Andrew C.

论文摘要

在植物繁殖中,环境(GXE)相互作用的基因型存在对耕作决策和引入新作物品种的影响很大。线性和双线性项的组合已被证明在对这种类型的数据进行建模方面非常有用。鉴定GXE的一种广泛使用的方法是加性主要效应和乘法相互作用效应(AMMI)模型。但是,由于数据经常可能是高维的,马尔可夫链蒙特卡洛(MCMC)方法在计算上可能是不可行的。在本文中,我们考虑了这种模型的变异推理方法。我们得出用于估计参数的变异近似值,并使用模拟和真实数据将近似值与MCMC进行比较。我们提出的新推论框架平均要快两倍,同时保持与MCMC相同的预测性能。

In plant breeding the presence of a genotype by environment (GxE) interaction has a strong impact on cultivation decision making and the introduction of new crop cultivars. The combination of linear and bilinear terms has been shown to be very useful in modelling this type of data. A widely-used approach to identify GxE is the Additive Main Effects and Multiplicative Interaction Effects (AMMI) model. However, as data frequently can be high-dimensional, Markov chain Monte Carlo (MCMC) approaches can be computationally infeasible. In this article, we consider a variational inference approach for such a model. We derive variational approximations for estimating the parameters and we compare the approximations to MCMC using both simulated and real data. The new inferential framework we propose is on average two times faster whilst maintaining the same predictive performance as MCMC.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源