论文标题

FARO:一个测量Petascale Rubin天文台数据产品的科学性能的框架

Faro: A framework for measuring the scientific performance of petascale Rubin Observatory data products

论文作者

Guy, Leanne P., Bechtol, Keith, Carlin, Jeffrey L., Dennihy, Erik, Ferguson, Peter S., Krughoff, K. Simon, Lupton, Robert H., Slater, Colin T., Findeisen, Krzysztof, Kannawadi, Arun, Kelvin, Lee S., Lust, Nate B., MacArthur, Lauren A., Martinez, Michael N., Reed, Sophie L., Taranu, Dan S., Wood-Vasey, W. Michael

论文摘要

Vera C. Rubin天文台将通过其独特的广泛深度多色成像调查(LSST)的独特深度多色成像调查(LSST),在未来十年内推进许多天文学领域。 LSST每晚将产生约20TB的原始数据,LSST Science Pipeelines会自动处理,以生成科学就绪的数据产品 - 处理后的图像,目录和警报。为了确保这些数据产品能够具有LSST的变革性科学,对其质量和科学保真度提出了严格的要求,例如,图像质量和深度,星体和光度表现以及对象恢复完整性。在本文中,我们介绍了FARO,这是一个自动有效地计算LSST数据产品的科学性能指标的框架,用于不同粒度的数据单位,范围从单个探测器到全库摘要统计数据。通过测量和监视指标,我们能够评估开发过程中算法性能和进行回归测试的趋势,将一种算法的性能与另一种算法的性能进行比较,并验证LSST数据产品将通过与规范相比满足性能需求。我们使用FARO提出了初始结果,以表征模拟和前体数据集中生产的数据产品的性能,并讨论使用FARO验证LSST调试数据产品的性能的计划。

The Vera C. Rubin Observatory will advance many areas of astronomy over the next decade with its unique wide-fast-deep multi-color imaging survey, the Legacy Survey of Space and Time (LSST). The LSST will produce approximately 20TB of raw data per night, which will be automatically processed by the LSST Science Pipelines to generate science-ready data products -- processed images, catalogs and alerts. To ensure that these data products enable transformative science with LSST, stringent requirements have been placed on their quality and scientific fidelity, for example on image quality and depth, astrometric and photometric performance, and object recovery completeness. In this paper we introduce faro, a framework for automatically and efficiently computing scientific performance metrics on the LSST data products for units of data of varying granularity, ranging from single-detector to full-survey summary statistics. By measuring and monitoring metrics, we are able to evaluate trends in algorithmic performance and conduct regression testing during development, compare the performance of one algorithm against another, and verify that the LSST data products will meet performance requirements by comparing to specifications. We present initial results using faro to characterize the performance of the data products produced on simulated and precursor data sets, and discuss plans to use faro to verify the performance of the LSST commissioning data products.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源