论文标题
椭圆曲线家族的Frobenius常数
Frobenius constants for families of elliptic curves
论文作者
论文摘要
本文处理了一类时期,即Frobenius Stonstants,其中描述了代数几何形状中产生的微分方程的Frobenius溶液的单曲。我们代表了与椭圆曲线家族有关的Frobenius常数,因为迭代的模块化形式积分。利用模块化形式的时期理论,我们就Zeta值的一些常数见证了其中一些常数。
The paper deals with a class of periods, Frobenius constants, which describe monodromy of Frobenius solutions of differential equations arising in algebraic geometry. We represent Frobenius constants related to families of elliptic curves as iterated integrals of modular forms. Using the theory of periods of modular forms, we then witness some of these constants in terms of zeta values.