论文标题

使用超导量子的神经元的磁力测定法

Magnetometry of neurons using a superconducting qubit

论文作者

Toida, Hiraku, Sakai, Koji, Teshima, Tetsuhiko F., Hori, Masahiro, Kakuyanagi, Kosuke, Mahboob, Imran, Ono, Yukinori, Saito, Shiro

论文摘要

我们使用超导通量Qubit在显微镜区域内用作敏感磁力计的超导通量Qubit在聚合物膜上展示了培养的神经元的磁力测定法。神经元在Fe $^{3+} $富含培养基中培养,以增加由离子源自离子的电子旋转产生的磁化信号。通过用聚合物膜从Laden神经元中绝缘量子装置来执行磁力测定法,同时将它们之间的距离保持在几微米周围。通过改变温度(12.5-200 mk)和磁场(2.5-12.5 mt),我们观察到来自神经元的清晰磁化信号,该信号远高于聚合物膜本身的控制磁力测定法。从在10 K下测得的电子自旋共振(ESR)频谱中,磁化信号被确定为来自神经元中铁离子的电子旋转。该检测生物自旋系统的技术可以扩展以在单细胞水平上实现ESR光谱,这将给出细胞的光谱指纹。

We demonstrate magnetometry of cultured neurons on a polymeric film using a superconducting flux qubit that works as a sensitive magnetometer in a microscale area. The neurons are cultured in Fe$^{3+}$ rich medium to increase magnetization signal generated by the electron spins originating from the ions. The magnetometry is performed by insulating the qubit device from the laden neurons with the polymeric film while keeping the distance between them around several micrometers. By changing temperature (12.5 - 200 mK) and a magnetic field (2.5 - 12.5 mT), we observe a clear magnetization signal from the neurons that is well above the control magnetometry of the polymeric film itself. From electron spin resonance (ESR) spectrum measured at 10 K, the magnetization signal is identified to originate from electron spins of iron ions in neurons. This technique to detect a bio-spin system can be extended to achieve ESR spectroscopy at the single-cell level, which will give the spectroscopic fingerprint of cells.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源