论文标题

可扩展的K-FAC培训,用于具有分布式预处理的深神经网络

Scalable K-FAC Training for Deep Neural Networks with Distributed Preconditioning

论文作者

Zhang, Lin, Shi, Shaohuai, Wang, Wei, Li, Bo

论文摘要

二阶优化方法,尤其是D-KFAC(分布式Kronecker近似曲率)算法,在加速GPU群集上加速了深神经网络(DNN)训练方面已获得了吸引力。但是,现有的D-KFAC算法需要在预处理梯度之前计算和传达大量二阶信息,即Kronecker因素(KFS),从而导致大量的计算和通信开销以及高存储器足迹。在本文中,我们提出了DP-KFAC,这是一种新颖的分布式预处理方案,该方案将不同DNN层的KF构造任务分配给不同的工人。 DP-KFAC不仅保留了现有D-KFAC算法的收敛属性,而且还可以带来三个好处:构造KFS的计算开销减少,没有KFS的通信和低内存的足迹。在64-GPU群集上进行的广泛实验表明,DP-KFAC将开销的计算开销降低了1.55 x-1.65x,通信成本降低了2.79 x-3.15x,并且与现行的D-KFAC方法相比,每个二阶更新中的计算成本和记忆足迹在每个二阶更新中。

The second-order optimization methods, notably the D-KFAC (Distributed Kronecker Factored Approximate Curvature) algorithms, have gained traction on accelerating deep neural network (DNN) training on GPU clusters. However, existing D-KFAC algorithms require to compute and communicate a large volume of second-order information, i.e., Kronecker factors (KFs), before preconditioning gradients, resulting in large computation and communication overheads as well as a high memory footprint. In this paper, we propose DP-KFAC, a novel distributed preconditioning scheme that distributes the KF constructing tasks at different DNN layers to different workers. DP-KFAC not only retains the convergence property of the existing D-KFAC algorithms but also enables three benefits: reduced computation overhead in constructing KFs, no communication of KFs, and low memory footprint. Extensive experiments on a 64-GPU cluster show that DP-KFAC reduces the computation overhead by 1.55x-1.65x, the communication cost by 2.79x-3.15x, and the memory footprint by 1.14x-1.47x in each second-order update compared to the state-of-the-art D-KFAC methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源