论文标题

(IN)公制植入和度量有效场理论的等效性

(In)equivalence of Metric-Affine and Metric Effective Field Theories

论文作者

Pradisi, Gianfranco, Salvio, Alberto

论文摘要

在重力的几何方法中,度量和(重力)连接可以是独立的,并且涉及公制的理论。我们构建了公制疗法有效场理论的最通用的动作,包括通用物质部门,该连接不带有其他动态场。除其他事项外,这有助于识别有其他动态领域的有效领域理论集的补体集,它们可能具有有趣的现象学。在后一组中,我们详细研究了一个庞大的类别,其中HOLST不变性(曲率与Levi-Civita反对称张量的收缩)是动力学的伪cal。在爱因斯坦 - 卡丹的情况下(可以引入指标并引入费米子),我们还评论了从扭转和上述伪斯卡利与通用物质部门和度量的上述伪苏斯卡群体和计算的扭转和计算相互作用的现象学作用。最后,我们表明,在一个任意逼真的度量疗法理论中,以通用物质部门为特征,等效原理总是以低能形式出现,而无需假设。

In a geometrical approach to gravity the metric and the (gravitational) connection can be independent and one deals with metric-affine theories. We construct the most general action of metric-affine effective field theories, including a generic matter sector, where the connection does not carry additional dynamical fields. Among other things, this helps in identifying the complement set of effective field theories where there are other dynamical fields, which can have an interesting phenomenology. Within the latter set, we study in detail a vast class where the Holst invariant (the contraction of the curvature with the Levi-Civita antisymmetric tensor) is a dynamical pseudoscalar. In the Einstein-Cartan case (where the connection is metric compatible and fermions can be introduced) we also comment on the possible phenomenological role of dynamical dark photons from torsion and compute interactions of the above-mentioned pseudoscalar with a generic matter sector and the metric. Finally, we show that in an arbitrary realistic metric-affine theory featuring a generic matter sector the equivalence principle always emerges at low energies without the need to postulate it.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源