论文标题

检测多元时间序列异常和根本原因的因果方法

A Causal Approach to Detecting Multivariate Time-series Anomalies and Root Causes

论文作者

Yang, Wenzhuo, Zhang, Kun, Hoi, Steven C. H.

论文摘要

在多变量时间序列中检测异常和相应的根本原因在监视各种现实世界系统(例如IT系统操作或制造行业)的行为方面起着重要作用。以前的异常检测方法对关节分布进行建模,而无需考虑多元时间序列的潜在机制,从而使它们在计算上饥饿,难以识别根本原因。在本文中,我们从因果的角度提出了异常检测问题,并将异常视为未遵循常规因果机制来生成多变量数据的情况。然后,我们提出了一个基于因果关系的框架,用于检测异常和根本原因。它首先从数据中学习因果结构,然后渗透实例是否是相对于局部因果机制的异常,可以直接从数据中估算有条件的分布。鉴于因果系统的模块化特性(生成不同变量的因果过程是无关的模块),原始问题被分为一系列单独的,更简单和低维异常检测问题,因此可以直接识别出异常(根部原因)的地方。我们通过模拟和公共数据集以及对现实世界AIOPS应用程序的案例研究评估我们的方法,显示其功效,鲁棒性和可行性。

Detecting anomalies and the corresponding root causes in multivariate time series plays an important role in monitoring the behaviors of various real-world systems, e.g., IT system operations or manufacturing industry. Previous anomaly detection approaches model the joint distribution without considering the underlying mechanism of multivariate time series, making them computationally hungry and hard to identify root causes. In this paper, we formulate the anomaly detection problem from a causal perspective and view anomalies as instances that do not follow the regular causal mechanism to generate the multivariate data. We then propose a causality-based framework for detecting anomalies and root causes. It first learns the causal structure from data and then infers whether an instance is an anomaly relative to the local causal mechanism whose conditional distribution can be directly estimated from data. In light of the modularity property of causal systems (the causal processes to generate different variables are irrelevant modules), the original problem is divided into a series of separate, simpler, and low-dimensional anomaly detection problems so that where an anomaly happens (root causes) can be directly identified. We evaluate our approach with both simulated and public datasets as well as a case study on real-world AIOps applications, showing its efficacy, robustness, and practical feasibility.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源