论文标题
装饰的TQFT及其希尔伯特空间
Decorated TQFTs and their Hilbert Spaces
论文作者
论文摘要
我们讨论了拓扑量子场理论,该理论计算拓扑不变性,这些拓扑不变性依赖于三个manifolds上的其他结构(或装饰)。 GUKOV,PEI,PUTROV和VAFA提出的$ q $ - series不变$ \ hat {z}(q)$是这样不变的一个例子。我们描述了如何通过切割和粘合来获取这些装饰的不变性,并为在$ \ hat {z} $ -TQFT中分配给二维表面的希尔伯特空间提出建议。
We discuss topological quantum field theories that compute topological invariants which depend on additional structures (or decorations) on three-manifolds. The $q$-series invariant $\hat{Z}(q)$ proposed by Gukov, Pei, Putrov and Vafa is an example of such an invariant. We describe how to obtain these decorated invariants by cutting and gluing, and make a proposal for Hilbert spaces that are assigned to two-dimensional surfaces in the $\hat{Z}$-TQFT.