论文标题
$ \ Mathcal {n} = 2 $ sachdev-ye-kitaev型号的阶段
Phases of $\mathcal{N}=2$ Sachdev-Ye-Kitaev models
论文作者
论文摘要
我们研究$ \ MATHCAL {N} = 2 $超对称性Sachdev-ye-Kitaev(Syk)模型,具有复杂的费米子,以非零背景费用。我们提出了一个新的$ \ Mathcal {n} = 2 $ SYK模型,具有多个$ u(1)$对称性,整数费用和一个非呈现的超对称索引,实现已知Syk模型中不存在的功能。在这两种模型中,具有超级切斯瓦兹模式的保形解决方案都在低温下出现,这表明了几乎ADS $ _2 $/bps物理的外观。但是,与复杂的SYK相反,费米亚缩放尺寸取决于在保形极限中的背景电荷。对于临界电荷,我们发现高到低熵相变,在该转变中,共形溶液停止有效。这种过渡有一个简单的解释:费米亚缩放维度违反了单位性界限。我们对超对称黑洞的全息解释提供了一些评论。
We study $\mathcal{N}=2$ supersymmetric Sachdev-Ye-Kitaev (SYK) models with complex fermions at non-zero background charge. Motivated by multi-charge supersymmetric black holes, we propose a new $\mathcal{N}=2$ SYK model with multiple $U(1)$ symmetries, integer charges, and a non-vanishing supersymmetric index, realizing features not present in known SYK models. In both models, a conformal solution with a super-Schwarzian mode emerges at low temperatures, signalling the appearance of nearly AdS$_2$/BPS physics. However, in contrast to complex SYK, the fermion scaling dimension depends on the background charge in the conformal limit. For a critical charge, we find a high to low entropy phase transition in which the conformal solution ceases to be valid. This transition has a simple interpretation: the fermion scaling dimension violates the unitarity bound. We offer some comments on a holographic interpretation for supersymmetric black holes.