论文标题

F0(1370)的争议来自分散膜中膜散射数据分析

The f0(1370) controversy from dispersive meson-meson scattering data analyses

论文作者

Pelaez, Jose Ramon, Rodas, Arkaitz, de Elvira, Jacobo Ruiz

论文摘要

我们确定了在介子 - 梅森散射数据的分散分析中的长期$ f_0(1370)$共振的存在。为此,我们提出了一种使用正向分散关系的新颖方法,对通用非弹性共振有效。我们在$(1245 \ pm 40)中找到它的极点 - i \,(300^{+30} _ { - 70})$ MEV $ππ$散射。我们还提供耦合,并进一步检查外推分散关系或其他延续方法。 $(1380^{+70} _ { - 60}) - i \,(220^{+80} _ { - 70})$ MEV在$(220^{+80})$ MEV中也出现在$ππ\至k \ bar k $数据分析中的$(220^{+80} _ { - 70})$(220^{+80} _ { - 70})$(220^{+80} _ {+70})。尽管解决了它的存在,但我们与模型无关的分散和分析方法仍然显示出应归因于数据的$ππ$和$ K \ bar k $通道之间的极点张力。

We establish the existence of the long-debated $f_0(1370)$ resonance in the dispersive analyses of meson-meson scattering data. For this, we present a novel approach using forward dispersion relations, valid for generic inelastic resonances. We find its pole at $(1245\pm 40)- i\,(300^{+30}_{-70})$ MeV in $ππ$ scattering. We also provide the couplings as well as further checks extrapolating partial-wave dispersion relations or with other continuation methods. A pole at $(1380^{+70}_{-60})-i\,(220^{+80}_{-70})$ MeV also appears in the $ππ\to K\bar K$ data analysis with partial-wave dispersion relations. Despite settling its existence, our model-independent dispersive and analytic methods still show a lingering tension between pole parameters from the $ππ$ and $K\bar K$ channels that should be attributed to data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源