论文标题

公制树木的组合定理

A Combination Theorem for Trees of Metric Bundles

论文作者

Halder, Rakesh

论文摘要

由Bestvina-Feighn([BF92])和MJ-Sardar([MS12])的工作激励,我们定义了公制捆绑树的树木,以汇总公制空间和度量捆绑包的树木。然后,我们证明了这些空间的组合定理。更准确地说,我们证明,如果保持以下内容,则一束公制捆绑树是双曲线的(请参见定理1.4)。 $(1)$纤维是均匀的双曲度度量空间,基数也是双曲度度量空间,$(2)$(2)$ barycenter图的纤维图均匀地过滤了过滤量,$(3)$(3)$边缘空间均匀地嵌入了相应的纤维和$(4)$(4)$(4)$ bestvina-feighn flareyn's flaringny's flaighn's flaighn's flareyn's flaring's flainsy's flainsy's flainsy's flaring's flainey's flains flaring。 作为应用程序,我们为有限的简单复合物的某些组的某些组合物提供了组合定理(请参见定理1.2)。

Motivated by the work of Bestvina-Feighn ([BF92]) and Mj-Sardar ([MS12]), we define trees of metric bundles subsuming both the trees of metric spaces and the metric bundles. Then we prove a combination theorem for these spaces. More precisely, we prove that a tree of metric bundles is hyperbolic if the following hold (see Theorem 1.4). $(1)$ The fibers are uniformly hyperbolic metric spaces and the base is also hyperbolic metric space, $(2)$ barycenter maps for the fibers are uniformly coarsely surjective, $(3)$ the edge spaces are uniformly qi embedded in the corresponding fibers and $(4)$ Bestvina-Feighn's flaring condition is satisfied. As an application, we provide a combination theorem for certain complexes of groups over finite simplicial complex (see Theorem 1.2).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源