论文标题

单质稳定性的组合和算法方面

Combinatorial and Algorithmic Aspects of Monadic Stability

论文作者

Dreier, Jan, Mählmann, Nikolas, Mouawad, Amer E., Siebertz, Sebastian, Vigny, Alexandre

论文摘要

图形的密集类别是具有丰富结构和算法属性的稀疏图类别的类别,但是,它们甚至无法捕获简单的密集图类别。源自模型理论的单元稳定的类别,概括了无处浓密的类,并在转换下关闭它们,即由颜色和简单的一阶解释定义的转换。在这项工作中,我们旨在将无处浓密类别的一些组合和算法特性扩展到有限的图形类别。我们证明了以下结果。 - 在单一稳定的课程中,Ramsey数字$ r(s,t)$由$ \ nathcal {o}(t^{s-1-Δ})$限制为某些$δ> 0 $,从$ s \ leq k $以$ k $稳定的图表而闻名。 - 对于每一个稳定的稳定类$ \ MATHCAL {C} $和每个整数$ r $,都存在$δ> 0 $,以使每个图$ g \ in \ Mathcal {c} $中包含一个$ r $ -subdivision the biclique $ k_ {子图。这将概括的结果概括为无处浓密的图形类。 - 我们获得了可观稳定的图形类别的更较强的规律性引理。 - 最后,我们证明我们可以在无处茂密的类别中计算独立集合的多项式内核,并主导集合问题。以前,仅固定参数可拖动算法以这些问题在无处茂密的类别的能力上而闻名。

Nowhere dense classes of graphs are classes of sparse graphs with rich structural and algorithmic properties, however, they fail to capture even simple classes of dense graphs. Monadically stable classes, originating from model theory, generalize nowhere dense classes and close them under transductions, i.e. transformations defined by colorings and simple first-order interpretations. In this work we aim to extend some combinatorial and algorithmic properties of nowhere dense classes to monadically stable classes of finite graphs. We prove the following results. - In monadically stable classes the Ramsey numbers $R(s,t)$ are bounded from above by $\mathcal{O}(t^{s-1-δ})$ for some $δ>0$, improving the bound $R(s,t)\in \mathcal{O}(t^{s-1}/(\log t)^{s-1})$ known for general graphs and the bounds known for $k$-stable graphs when $s\leq k$. - For every monadically stable class $\mathcal{C}$ and every integer $r$, there exists $δ> 0$ such that every graph $G \in \mathcal{C}$ that contains an $r$-subdivision of the biclique $K_{t,t}$ as a subgraph also contains $K_{t^δ,t^δ}$ as a subgraph. This generalizes earlier results for nowhere dense graph classes. - We obtain a stronger regularity lemma for monadically stable classes of graphs. - Finally, we show that we can compute polynomial kernels for the independent set and dominating set problems in powers of nowhere dense classes. Formerly, only fixed-parameter tractable algorithms were known for these problems on powers of nowhere dense classes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源