论文标题
在被困原子中通过非偏置耦合通过非偏置耦合的优质黑态冷却
Superior dark-state cooling via nonreciprocal couplings in trapped atoms
论文作者
论文摘要
冷却被困的原子向其运动基态冷却是量子模拟和量子计算应用的关键。通过利用成分原子之间的非互头耦合,我们提出了一种有趣的黑态冷却方案,中$λ$ -Type三级结构,该结构比单个原子中传统的电磁诱导的透明度冷却相比,它比传统的电磁诱导的透明度冷却。可以通过原子波导界面或自由空间光子量子链路来促进有效的非偏置耦合。通过调整深色状态冷却中允许的系统参数,我们以增强的冷却速率确定了更好冷却性能的参数区域。我们进一步证明了在不对称激光驾驶场下对黑态侧带冷却的映射,该驱动场显示出独特的传热,并承诺通过集体自旋交流的互动来帮助超过黑态的边带冷却。
Cooling the trapped atoms toward their motional ground states is key to applications of quantum simulation and quantum computation. By utilizing nonreciprocal couplings between constituent atoms, we present an intriguing dark-state cooling scheme in $Λ$-type three-level structure, which is shown superior than the conventional electromagnetically-induced-transparency cooling in a single atom. The effective nonreciprocal couplings can be facilitated either by an atom-waveguide interface or a free-space photonic quantum link. By tailoring system parameters allowed in dark-state cooling, we identify the parameter regions of better cooling performance with an enhanced cooling rate. We further demonstrate a mapping to the dark-state sideband cooling under asymmetric laser driving fields, which shows a distinct heat transfer and promises an outperforming dark-state sideband cooling assisted by collective spin-exchange interactions.