论文标题
多变量时间序列的固有异常检测
Intrinsic Anomaly Detection for Multi-Variate Time Series
论文作者
论文摘要
我们引入了多变量时间序列中异常检测问题的新型,实际相关的变化:内在的异常检测。它出现在从DevOps到IoT的各种实践场景中,我们想认识到在周围环境影响下运行的系统的故障。固有的异常是时间序列之间的功能依赖结构的变化,该功能依赖性结构代表了代表所述环境中系统内部状态的环境和时间序列。我们将此问题进行正式化,为其提供了不足的公共和新的专用数据集,并提供了处理内在异常检测的方法。这些解决了无法区分系统状态的预期变化和意外情况的现有异常检测方法的缩写,即,偏离环境影响的系统的变化。我们最有前途的方法是完全无监督的,并结合了对抗性学习和时间序列表示学习,从而解决了标签稀疏性和主观性等问题,同时允许导航并改善臭名昭著的有问题的异常检测数据集。
We introduce a novel, practically relevant variation of the anomaly detection problem in multi-variate time series: intrinsic anomaly detection. It appears in diverse practical scenarios ranging from DevOps to IoT, where we want to recognize failures of a system that operates under the influence of a surrounding environment. Intrinsic anomalies are changes in the functional dependency structure between time series that represent an environment and time series that represent the internal state of a system that is placed in said environment. We formalize this problem, provide under-studied public and new purpose-built data sets for it, and present methods that handle intrinsic anomaly detection. These address the short-coming of existing anomaly detection methods that cannot differentiate between expected changes in the system's state and unexpected ones, i.e., changes in the system that deviate from the environment's influence. Our most promising approach is fully unsupervised and combines adversarial learning and time series representation learning, thereby addressing problems such as label sparsity and subjectivity, while allowing to navigate and improve notoriously problematic anomaly detection data sets.