论文标题

部分可观测时空混沌系统的无模型预测

Modeling in higher dimensions to improve diagnostic testing accuracy: theory and examples for multiplex saliva-based SARS-CoV-2 antibody assays

论文作者

Luke, Rayanne A., Kearsley, Anthony J., Pisanic, Nora, Manabe, Yukari C., Thomas, David L., Heaney, Christopher D., Patrone, Paul N.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has emphasized the importance and challenges of correctly interpreting antibody test results. Identification of positive and negative samples requires a classification strategy with low error rates, which is hard to achieve when the corresponding measurement values overlap. Additional uncertainty arises when classification schemes fail to account for complicated structure in data. We address these problems through a mathematical framework that combines high dimensional data modeling and optimal decision theory. Specifically, we show that appropriately increasing the dimension of data better separates positive and negative populations and reveals nuanced structure that can be described in terms of mathematical models. We combine these models with optimal decision theory to yield a classification scheme that better separates positive and negative samples relative to traditional methods such as confidence intervals (CIs) and receiver operating characteristics. We validate the usefulness of this approach in the context of a multiplex salivary SARS-CoV-2 immunoglobulin G assay dataset. This example illustrates how our analysis: (i) improves the assay accuracy (e.g. lowers classification errors by up to 42 % compared to CI methods); (ii) reduces the number of indeterminate samples when an inconclusive class is permissible (e.g. by 40 % compared to the original analysis of the example multiplex dataset); and (iii) decreases the number of antigens needed to classify samples. Our work showcases the power of mathematical modeling in diagnostic classification and highlights a method that can be adopted broadly in public health and clinical settings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源