论文标题
医学图像分析中的强化学习:概念,应用,挑战和未来方向
Reinforcement Learning in Medical Image Analysis: Concepts, Applications, Challenges, and Future Directions
论文作者
论文摘要
动机:医学图像分析涉及帮助医师对病变或解剖结构进行定性和定量分析的任务,从而显着提高了诊断和预后的准确性和可靠性。传统上,这些任务由医生或医学物理学家完成,并带来两个主要问题:(i)低效率; (ii)受个人经验的偏见。在过去的十年中,已经应用了许多机器学习方法来加速和自动化图像分析过程。与受监督和无监督学习模型的大量部署相比,在医学图像分析中使用强化学习的尝试很少。这篇评论文章可以作为相关研究的垫脚石。意义:从我们的观察结果来看,尽管近年来增强学习逐渐增强了动力,但医学分析领域的许多研究人员发现很难理解和部署在诊所中。一个原因是缺乏组织良好的评论文章,针对缺乏专业计算机科学背景的读者。本文没有提供医学图像分析中所有强化学习模型的全面列表,而是可以帮助读者学习如何制定和解决他们的医学图像分析研究作为强化学习问题。方法和结果:我们从Google Scholar和PubMed中选择了已发表的文章。考虑到相关文章的稀缺性,我们还提供了一些出色的最新预印本。根据图像分析任务的类型对论文进行仔细审查和分类。我们首先回顾了强化学习的基本概念和流行的模型。然后,我们探讨了增强学习模型在具有里程碑意义的检测中的应用。最后,我们通过讨论审查的强化学习方法的局限性和可能的改进来结束这篇文章。
Motivation: Medical image analysis involves tasks to assist physicians in qualitative and quantitative analysis of lesions or anatomical structures, significantly improving the accuracy and reliability of diagnosis and prognosis. Traditionally, these tasks are finished by physicians or medical physicists and lead to two major problems: (i) low efficiency; (ii) biased by personal experience. In the past decade, many machine learning methods have been applied to accelerate and automate the image analysis process. Compared to the enormous deployments of supervised and unsupervised learning models, attempts to use reinforcement learning in medical image analysis are scarce. This review article could serve as the stepping-stone for related research. Significance: From our observation, though reinforcement learning has gradually gained momentum in recent years, many researchers in the medical analysis field find it hard to understand and deploy in clinics. One cause is lacking well-organized review articles targeting readers lacking professional computer science backgrounds. Rather than providing a comprehensive list of all reinforcement learning models in medical image analysis, this paper may help the readers to learn how to formulate and solve their medical image analysis research as reinforcement learning problems. Approach & Results: We selected published articles from Google Scholar and PubMed. Considering the scarcity of related articles, we also included some outstanding newest preprints. The papers are carefully reviewed and categorized according to the type of image analysis task. We first review the basic concepts and popular models of reinforcement learning. Then we explore the applications of reinforcement learning models in landmark detection. Finally, we conclude the article by discussing the reviewed reinforcement learning approaches' limitations and possible improvements.