论文标题
与对数的保形场理论相关的可集成浮子系统
Integrable Floquet systems related to logarithmic conformal field theory
论文作者
论文摘要
我们研究了一个与晶格统计系统相关的可集成的浮子量子系统,在密集聚合物的通用类别中。这些系统由temperley-Lieb代数的特定非单身代表来描述。我们发现了一个简单的谎言代数结构,用于templeley-lieb代数的元素,该元素在两个晶格位点不变,并显示了本地浮球保守的电荷和如何根据该代数表达的弗洛克特汉密尔顿。该系统在浮雕哈密顿量的局部和非本地阶段之间具有相变。我们提供了一个强烈的迹象,表明在缩放限制中,该非平衡系统由对数的保形场理论描述。
We study an integrable Floquet quantum system related to lattice statistical systems in the universality class of dense polymers. These systems are described by a particular non-unitary representation of the Temperley-Lieb algebra. We find a simple Lie algebra structure for the elements of Temperley-Lieb algebra which are invariant under shift by two lattice sites, and show how the local Floquet conserved charges and the Floquet Hamiltonian are expressed in terms of this algebra. The system has a phase transition between local and non-local phases of the Floquet Hamiltonian. We provide a strong indication that in the scaling limit this non-equilibrium system is described by the logarithmic conformal field theory.