论文标题
sur la cohomogieétalede la courbe de fargues-fontaine
Sur la cohomologie étale de la courbe de Fargues-Fontaine
论文作者
论文摘要
在本文中,在代数resp。分析了ADIC Fargues-Fontaine曲线。在$ \ ell \ neq p $ torsion案例中,核心的两个猜想得到了验证:消失的程度大于两个,以及ADIC的典型共同体和代数曲线的比较。在$ p $ torsion案件中,在某个假设下,证明了odic曲线上通过回落的ADIC曲线上的Zariski可构造的冰期大于两个Zariski可构造的滑轮的消失。
In this article the étale cohomology of constructible torsion sheaves on the étale site of the algebraic resp. adic Fargues-Fontaine curve is analyzed. In the $\ell\neq p$-torsion case, two conjectures of Fargues are verified: vanishing in degrees greater than two and the comparison between the étale cohomology of the adic and the algebraic curve. In the $p$-torsion case, under a certain assumption, the vanishing of the étale cohomology in degrees greater than two of those Zariski-constructible sheaves on the adic curve that come via pullback from the algebraic curve is proven.