论文标题

对光度星系调查的两点角度统计的快速仿真

Fast emulation of two-point angular statistics for photometric galaxy surveys

论文作者

Bonici, Marco, Biggio, Luca, Carbone, Carmelita, Guzzo, Luigi

论文摘要

我们开发了一组基于机器的宇宙学模拟器,以获得$ c(\ ell)$角功率谱系数的快速模型预测,这些系数表征了星系聚类和弱重力镜头的层析成像观察,并从多频段光度测量(及其交叉相关)中获得了弱重力镜头。一组神经网络经过训练,可以将宇宙学参数映射到系数中,从而在计算给定的宇宙学参数的所需统计数据时,就可以在标准的Boltzmann solvers中计算所需的统计数据,从而获得了加速$ \ Mathcal {O}(10^3)$,而准确的boltzmann solvers的准确性比0.175 $ $ $ $ $ $ <%$ <%$ <%$ <%$ <%。这对应于$ \ sim 2 \%$或更少的统计误差条中预期的IV级光度测量。通过($ \ textIt {i} $)在培训阶段之前($ \ textit {i} $)获得了速度和准确性的总体提高,并且($ \ textit {ii} $)与先前的实现相比,是更有效的神经网络体系结构。

We develop a set of machine-learning based cosmological emulators, to obtain fast model predictions for the $C(\ell)$ angular power spectrum coefficients characterising tomographic observations of galaxy clustering and weak gravitational lensing from multi-band photometric surveys (and their cross-correlation). A set of neural networks are trained to map cosmological parameters into the coefficients, achieving a speed-up $\mathcal{O}(10^3)$ in computing the required statistics for a given set of cosmological parameters, with respect to standard Boltzmann solvers, with an accuracy better than $0.175\%$ ($<0.1\%$ for the weak lensing case). This corresponds to $\sim 2\%$ or less of the statistical error bars expected from a typical Stage IV photometric surveys. Such overall improvement in speed and accuracy is obtained through ($\textit{i}$) a specific pre-processing optimisation, ahead of the training phase, and ($\textit{ii}$) a more effective neural network architecture, compared to previous implementations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源