论文标题
通过加强学习预测重症监护病房中输血的需求
Predicting the Need for Blood Transfusion in Intensive Care Units with Reinforcement Learning
论文作者
论文摘要
由于患病患者经常患贫血或凝血病,因此血液产物的输血是重症监护病房(ICU)的经常干预。但是,医生做出的不当输血决定通常与并发症的风险增加和医院成本更高有关。在这项工作中,我们旨在开发一种决策支持工具,该工具使用可用的患者信息来对三种常见的血液产品(红细胞,血小板和新鲜的冷冻血浆)进行输血决策。为此,我们采用了一个离散的批次加固学习(RL)算法,即离散的批处理约束Q学习,以确定观察到的患者轨迹的最佳动作(输血)。同时,我们考虑了不同的国家表示方法和奖励设计机制,以评估其对政策学习的影响。实验是在两个现实世界中的重症监护数据集上进行的:MIMIC-III和UCSF。结果表明,有关输血的政策建议通过准确性和对模拟III数据集的加权重要性评估进行了与真实医院政策的可比匹配。此外,数据筛选UCSF数据集的转移学习(TL)和RL的组合可以在准确性方面可提高17.02%,并且在跳跃启动和渐近性绩效方面,在三个转换任务中平均取得平均相比,跳高和渐近性绩效提高了18.94%和21.63%。最后,对输血决策的模拟表明,转移的RL政策可以将患者的估计28天死亡率降低2.74%,而敏锐度率在UCSF数据集中降低了1.18%。
As critically ill patients frequently develop anemia or coagulopathy, transfusion of blood products is a frequent intervention in the Intensive Care Units (ICU). However, inappropriate transfusion decisions made by physicians are often associated with increased risk of complications and higher hospital costs. In this work, we aim to develop a decision support tool that uses available patient information for transfusion decision-making on three common blood products (red blood cells, platelets, and fresh frozen plasma). To this end, we adopt an off-policy batch reinforcement learning (RL) algorithm, namely, discretized Batch Constrained Q-learning, to determine the best action (transfusion or not) given observed patient trajectories. Simultaneously, we consider different state representation approaches and reward design mechanisms to evaluate their impacts on policy learning. Experiments are conducted on two real-world critical care datasets: the MIMIC-III and the UCSF. Results demonstrate that policy recommendations on transfusion achieved comparable matching against true hospital policies via accuracy and weighted importance sampling evaluations on the MIMIC-III dataset. Furthermore, a combination of transfer learning (TL) and RL on the data-scarce UCSF dataset can provide up to $17.02% improvement in terms of accuracy, and up to 18.94% and 21.63% improvement in jump-start and asymptotic performance in terms of weighted importance sampling averaged over three transfusion tasks. Finally, simulations on transfusion decisions suggest that the transferred RL policy could reduce patients' estimated 28-day mortality rate by 2.74% and decreased acuity rate by 1.18% on the UCSF dataset.