论文标题
葡萄园中有深入增强学习
Position-Agnostic Autonomous Navigation in Vineyards with Deep Reinforcement Learning
论文作者
论文摘要
精确农业正在迅速吸引研究,以有效地引入自动化和机器人解决方案来支持农业活动。葡萄园和果园中的机器人导航在自主监控方面具有竞争优势,并轻松获取农作物来收集,喷涂和执行时必的耗时的必要任务。如今,自主导航算法利用了昂贵的传感器,这也需要大量的数据处理计算成本。尽管如此,葡萄园行代表了一个充满挑战的户外场景,在这种情况下,GPS和视觉进程技术通常难以提供可靠的定位信息。在这项工作中,我们将Edge AI与深入的强化学习结合在一起,提出了一种尖端的轻质解决方案,以解决自主葡萄园导航的问题,而无需利用精确的本地化数据并以基于灵活的学习方法来克服任务列出的算法。我们将端到端的感觉运动剂训练,该端机直接映射嘈杂的深度图像和位置不可或缺的机器人状态信息到速度命令,并将机器人引导到一排末端,并不断调整其前进的无碰撞中心轨迹。我们在现实的模拟葡萄园中进行的广泛实验证明了解决方案的有效性和代理的概括能力。
Precision agriculture is rapidly attracting research to efficiently introduce automation and robotics solutions to support agricultural activities. Robotic navigation in vineyards and orchards offers competitive advantages in autonomously monitoring and easily accessing crops for harvesting, spraying and performing time-consuming necessary tasks. Nowadays, autonomous navigation algorithms exploit expensive sensors which also require heavy computational cost for data processing. Nonetheless, vineyard rows represent a challenging outdoor scenario where GPS and Visual Odometry techniques often struggle to provide reliable positioning information. In this work, we combine Edge AI with Deep Reinforcement Learning to propose a cutting-edge lightweight solution to tackle the problem of autonomous vineyard navigation without exploiting precise localization data and overcoming task-tailored algorithms with a flexible learning-based approach. We train an end-to-end sensorimotor agent which directly maps noisy depth images and position-agnostic robot state information to velocity commands and guides the robot to the end of a row, continuously adjusting its heading for a collision-free central trajectory. Our extensive experimentation in realistic simulated vineyards demonstrates the effectiveness of our solution and the generalization capabilities of our agent.