论文标题

使用图形神经网络学习边界价值问题的解决方案操作员

Learning the Solution Operator of Boundary Value Problems using Graph Neural Networks

论文作者

Lötzsch, Winfried, Ohler, Simon, Otterbach, Johannes S.

论文摘要

作为在受边界价值约束的情况下,作为部分微分方程(PDE)的经典数值求解器的替代方案,在研究可以有效地解决此类问题的神经网络方面引起了人们的兴趣。在这项工作中,我们使用图神经网络(GNN)和光谱图卷积为两个不同时间独立的PDE设计了一个通用解决方案操作员。我们从有限元求解器的模拟数据上训练网络,以各种形状和不均匀性。与以前的作品相反,我们专注于受过训练的操作员概括以前看不见的情况的能力。具体而言,我们测试对不同形状和解决方案叠加的网格的概括,以确保不同数量的不均匀性。我们发现,在有限元网格中有很大变化的不同数据集进行培训是在所有情况下都能实现良好概括的关键要素。因此,我们认为GNN可用于学习在一系列属性上概括并生成的解决方案的解决方案,并比通用求解器快得多。我们可以公开可用的数据集可以使用并扩展,以验证这些模型在不同条件下的鲁棒性。

As an alternative to classical numerical solvers for partial differential equations (PDEs) subject to boundary value constraints, there has been a surge of interest in investigating neural networks that can solve such problems efficiently. In this work, we design a general solution operator for two different time-independent PDEs using graph neural networks (GNNs) and spectral graph convolutions. We train the networks on simulated data from a finite elements solver on a variety of shapes and inhomogeneities. In contrast to previous works, we focus on the ability of the trained operator to generalize to previously unseen scenarios. Specifically, we test generalization to meshes with different shapes and superposition of solutions for a different number of inhomogeneities. We find that training on a diverse dataset with lots of variation in the finite element meshes is a key ingredient for achieving good generalization results in all cases. With this, we believe that GNNs can be used to learn solution operators that generalize over a range of properties and produce solutions much faster than a generic solver. Our dataset, which we make publicly available, can be used and extended to verify the robustness of these models under varying conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源