论文标题

Oberbeck-Boussinesq近似的严格推导揭示了意外项

Rigorous derivation of the Oberbeck-Boussinesq approximation revealing unexpected term

论文作者

Bella, Peter, Feireisl, Eduard, Oschmann, Florian

论文摘要

我们考虑一般可压缩的粘性和热传导流体,限制在两个平行板之间并从底部加热。流体的时间演变由Navier-Stokes-stokes-themers System描述,在低马赫和弗洛德数字的制度中,相互关联。出乎意料的是,与温度的诺伊曼边界条件的情况不同,渐近极限被确定为在温度偏差的非本地边界条件下补充的Oberbeck- Boussinesq系统。

We consider a general compressible viscous and heat conducting fluid confined between two parallel plates and heated from the bottom. The time evolution of the fluid is described by the Navier--Stokes--Fourier system considered in the regime of low Mach and Froude numbers suitably interrelated. Surprisingly and differently to the case of Neumann boundary conditions for the temperature, the asymptotic limit is identified as the Oberbeck--Boussinesq system supplemented with non--local boundary conditions for the temperature deviation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源