论文标题
信息熵初始化混凝土自动编码器,用于最佳传感器放置和重建地球物理场
Information Entropy Initialized Concrete Autoencoder for Optimal Sensor Placement and Reconstruction of Geophysical Fields
论文作者
论文摘要
我们提出了一种新的方法,用于最佳传感器放置,以解决稀疏测量的地球物理领域的问题。我们的方法包括两个阶段。在第一阶段,我们通过通过条件PixelCNN网络近似其信息熵来估计物理场与空间坐标的变化。为了计算熵,提出了二维数据阵列(螺旋顺序)的新排序,这使得可以同时获得几个空间尺度的物理场的熵。在第二阶段,物理场的熵用于初始化最佳传感器位置的分布。该分布通过直通梯度估计器和对抗性损失的混凝土自动编码器体系结构进一步优化,以同时最大程度地减少传感器的数量并最大程度地提高重建精度。与常用的主成分分析不同,我们的方法与数据大小线性缩放。我们在两个例子上演示了我们的方法:(a)温度和(b)巴伦支海和斯瓦尔巴德群岛周围的盐度场。对于这些示例,我们计算方法的重建误差和一些基准。我们对两个基准(1)PCA进行QR分解和(2)气候测试。我们发现所获得的最佳传感器位置具有明确的物理解释,并且与海流之间的边界相对应。
We propose a new approach to the optimal placement of sensors for the problem of reconstructing geophysical fields from sparse measurements. Our method consists of two stages. In the first stage, we estimate the variability of the physical field as a function of spatial coordinates by approximating its information entropy through the Conditional PixelCNN network. To calculate the entropy, a new ordering of a two-dimensional data array (spiral ordering) is proposed, which makes it possible to obtain the entropy of a physical field simultaneously for several spatial scales. In the second stage, the entropy of the physical field is used to initialize the distribution of optimal sensor locations. This distribution is further optimized with the Concrete Autoencoder architecture with the straight-through gradient estimator and adversarial loss to simultaneously minimize the number of sensors and maximize reconstruction accuracy. Our method scales linearly with data size, unlike commonly used Principal Component Analysis. We demonstrate our method on the two examples: (a) temperature and (b) salinity fields around the Barents Sea and the Svalbard group of islands. For these examples, we compute the reconstruction error of our method and a few baselines. We test our approach against two baselines (1) PCA with QR factorization and (2) climatology. We find out that the obtained optimal sensor locations have clear physical interpretation and correspond to the boundaries between sea currents.