论文标题

在CCS上的分支分支一致性的公理化

On the Axiomatisation of Branching Bisimulation Congruence over CCS

论文作者

Aceto, Luca, Castiglioni, Valentina, Ingolfsdottir, Anna, Luttik, Bas

论文摘要

在本文中,我们调查了(限制,重新布置和递归片段的平等理论)CCS Modulo扎根分支双性恋,这是一种经典的,基于双分裂的等效概念,从过程行为中的内部计算步骤中抽象出来。首先,我们表明CCS不是基于有限的Modulo。作为对该负面结果证明的独立兴趣的关键步骤,我们证明每个CCS过程在不可分解的过程中都有独特的并行分解模型分支双向分支。作为第二个主要贡献,我们表明,当一组动作是有限的时,植根的分支双相似性在CCS上具有有限的方程式,而CCS富含ACP的左合并和通信合并操作员。

In this paper we investigate the equational theory of (the restriction, relabelling, and recursion free fragment of) CCS modulo rooted branching bisimilarity, which is a classic, bisimulation-based notion of equivalence that abstracts from internal computational steps in process behaviour. Firstly, we show that CCS is not finitely based modulo the considered congruence. As a key step of independent interest in the proof of that negative result, we prove that each CCS process has a unique parallel decomposition into indecomposable processes modulo branching bisimilarity. As a second main contribution, we show that, when the set of actions is finite, rooted branching bisimilarity has a finite equational basis over CCS enriched with the left merge and communication merge operators from ACP.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源