论文标题

Slova:使用单标签One-VS-ALL分类器进行不确定性估算

SLOVA: Uncertainty Estimation Using Single Label One-Vs-All Classifier

论文作者

Wójcik, Bartosz, Grela, Jacek, Śmieja, Marek, Misztal, Krzysztof, Tabor, Jacek

论文摘要

深度神经网络具有令人印象深刻的性能,但是他们无法可靠地估计其预测信心,从而限制了其在高风险领域中的适用性。我们表明,应用多标签的一VS损失揭示了分类的歧义,并降低了模型的过度自信。引入的Slova(单标签一VS-All)模型重新定义了单个标签情况的典型的一Vs所有预测概率,其中只有一个类是正确的答案。仅当单个类具有很高的概率并且其他概率可以忽略不计时,提议的分类器才有信心。与典型的SoftMax函数不同,如果所有其他类的概率都很小,Slova自然会检测到分布样本。该模型还通过指数校准进行了微调,这使我们能够与模型精度准确地对齐置信分数。我们在三个任务上验证我们的方法。首先,我们证明了斯洛伐克与最先进的分布校准具有竞争力。其次,在数据集偏移下,斯洛伐克的性能很强。最后,我们的方法在检测到分布样本时的表现非常出色。因此,斯洛伐克是一种工具,可以在需要不确定性建模的各种应用中使用。

Deep neural networks present impressive performance, yet they cannot reliably estimate their predictive confidence, limiting their applicability in high-risk domains. We show that applying a multi-label one-vs-all loss reveals classification ambiguity and reduces model overconfidence. The introduced SLOVA (Single Label One-Vs-All) model redefines typical one-vs-all predictive probabilities to a single label situation, where only one class is the correct answer. The proposed classifier is confident only if a single class has a high probability and other probabilities are negligible. Unlike the typical softmax function, SLOVA naturally detects out-of-distribution samples if the probabilities of all other classes are small. The model is additionally fine-tuned with exponential calibration, which allows us to precisely align the confidence score with model accuracy. We verify our approach on three tasks. First, we demonstrate that SLOVA is competitive with the state-of-the-art on in-distribution calibration. Second, the performance of SLOVA is robust under dataset shifts. Finally, our approach performs extremely well in the detection of out-of-distribution samples. Consequently, SLOVA is a tool that can be used in various applications where uncertainty modeling is required.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源