论文标题

基于同源性的持续同源性描述符,用于无定形结构的机器学习潜力

Persistent homology-based descriptor for machine-learning potential of amorphous structures

论文作者

Minamitani, Emi, Obayashi, Ippei, Shimizu, Koji, Watanabe, Satoshi

论文摘要

在凝结物理学中,对无定形材料物理特性的高临界性预测具有挑战性。实现这一目标的一种有前途的方法是机器学习电位,这是计算要求从头算计算的替代方法。在应用机器学习势时,描述符来代表原子构型至关重要。这些描述符应该是对称操作不变的。使用原子位置和图形神经网络(GNN)的平滑重叠手工制作的表示是用于构建对称性不变描述符的方法的示例。在这项研究中,我们提出了一个基于持久图(PD)的新颖描述符,这是持续的同源性(pH)的二维表示。首先,我们证明了从PD获得的归一化二维直方图可以预测,即使使用简单的模型,也可以在各种密度下每个无定形碳(AC)的平均能量。其次,对描述符空间的尺寸还原结果的分析表明,pH可以用于构造具有类似于GNN中潜在空间的特征的描述符。这些结果表明,pH是一种有前途的方法,用于构建适用于机器学习势的描述符,而无需进行高参数调整和深度学习技术。

High-accuracy prediction of the physical properties of amorphous materials is challenging in condensed-matter physics. A promising method to achieve this is machine-learning potentials, which is an alternative to computationally demanding ab initio calculations. When applying machine-learning potentials, the construction of descriptors to represent atomic configurations is crucial. These descriptors should be invariant to symmetry operations. Handcrafted representations using a smooth overlap of atomic positions and graph neural networks (GNN) are examples of methods used for constructing symmetry-invariant descriptors. In this study, we propose a novel descriptor based on a persistence diagram (PD), a two-dimensional representation of persistent homology (PH). First, we demonstrated that the normalized two-dimensional histogram obtained from PD could predict the average energy per atom of amorphous carbon (aC) at various densities, even when using a simple model. Second, an analysis of the dimensional reduction results of the descriptor spaces revealed that PH can be used to construct descriptors with characteristics similar to those of a latent space in a GNN. These results indicate that PH is a promising method for constructing descriptors suitable for machine-learning potentials without hyperparameter tuning and deep-learning techniques.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源