论文标题
广泛的量子电路优化,拓扑意识合成
Wide Quantum Circuit Optimization with Topology Aware Synthesis
论文作者
论文摘要
单位合成是一种优化技术,可以在绘制量子电路以限制量子拓扑的同时实现最佳的多价门计数。由于合成算法通过其指数增长的运行时间和内存需求限制可伸缩性,因此在电路上的应用比5量Quarbits的应用需要将电路分配为较小的组件。在这项工作中,我们将探索减少宽(16-100乘以)映射的量子电路的深度(程序运行时间)和多量门指令计数的方法。减少电路深度和门数直接影响程序性能以及成功执行并行量子机上量子电路的可能性。 我们提出了TOPA,这是一种拓扑意识到的合成工具,它是使用\ emph {bqskit}框架构建的,该框架在映射之前先于量子电路。对分区的子电路进行了优化并拟合到稀疏的Qubit子接头,以平衡通常相反的合成和映射算法的需求。该技术可用于减少映射到Google和IBM稀疏Qubit拓扑的宽量子电路的深度和门数。与大规模合成算法相比,该算法的重点是在映射后优化量子电路时,TOPAS能够平均将深度降低35.2%,而CNOT Gate的平均计数为2D网格拓扑时的平均值为11.5%。与传统的量子编译器相比,使用窥视孔优化和映射Qiskit或$ t | ket \ rangle $工具包的映射算法时,我们的方法能够提供显着改善性能,将CNOT计数降低30.3%,并且DEPTH的平均水平下降了38.2%。
Unitary synthesis is an optimization technique that can achieve optimal multi-qubit gate counts while mapping quantum circuits to restrictive qubit topologies. Because synthesis algorithms are limited in scalability by their exponentially growing run time and memory requirements, application to circuits wider than 5 qubits requires divide-and-conquer partitioning of circuits into smaller components. In this work, we will explore methods to reduce the depth (program run time) and multi-qubit gate instruction count of wide (16-100 qubit) mapped quantum circuits optimized with synthesis. Reducing circuit depth and gate count directly impacts program performance and the likelihood of successful execution for quantum circuits on parallel quantum machines. We present TopAS, a topology aware synthesis tool built with the \emph{BQSKit} framework that preconditions quantum circuits before mapping. Partitioned subcircuits are optimized and fitted to sparse qubit subtopologies in a way that balances the often opposing demands of synthesis and mapping algorithms. This technique can be used to reduce the depth and gate count of wide quantum circuits mapped to the sparse qubit topologies of Google and IBM. Compared to large scale synthesis algorithms which focus on optimizing quantum circuits after mapping, TopAS is able to reduce depth by an average of 35.2% and CNOT gate count an average of 11.5% when targeting a 2D mesh topology. When compared with traditional quantum compilers using peephole optimization and mapping algorithms from the Qiskit or $t|ket\rangle$ toolkits, our approach is able to provide significant improvements in performance, reducing CNOT counts by 30.3% and depth by 38.2% on average.