论文标题
通过数据同化在沙珀模型中的预测太阳耀斑
Forecasting Solar Flares by Data Assimilation in Sandpile Models
论文作者
论文摘要
太阳耀斑的预测仍然是太空天气研究中的重大挑战,目前没有能够产生可靠的预测,高于气候。在本文中,我们使用数据同化以及计算廉价的细胞自动机(称为沙珀模型)提出了一项耀斑预测技术。我们的数据同化算法使用模拟退火方法来找到最佳的初始条件,可很好地再现能量释放时间序列。我们介绍并经验分析了三种沙珀模型的预测能力,即LU和Hamilton模型(LH)和两个确定性驱动的模型(D)。尽管它们具有随机元素,但我们表明,确定性驱动的模型在模拟事件之间显示时间相关性,这是数据同化所需的条件。我们介绍了新的数据同化算法,并证明了其在同化雪崩模型本身产生的合成观察方面的成功。然后,我们将我们的方法应用于11个活跃区域的X射线时间序列,在其一生中生成了多个X级耀斑。我们证明,对于如此大的耀斑,与模型气候相比,我们的数据同化方案大大提高了``全明确''预测的成功。
The prediction of solar flares is still a significant challenge in space weather research, with no techniques currently capable of producing reliable forecasts performing significantly above climatology. In this paper, we present a flare forecasting technique using data assimilation coupled with computationally inexpensive cellular automata called sandpile models. Our data assimilation algorithm uses the simulated annealing method to find an optimal initial condition that reproduces well an energy-release time series. We present and empirically analyze the predictive capabilities of three sandpile models, namely the Lu and Hamilton model (LH) and two deterministically-driven models (D). Despite their stochastic elements, we show that deterministically-driven models display temporal correlations between simulated events, a needed condition for data assimilation. We present our new data assimilation algorithm and demonstrate its success in assimilating synthetic observations produced by the avalanche models themselves. We then apply our method to GOES X-Ray time series for 11 active regions having generated multiple X-class flares in the course of their lifetime. We demonstrate that for such large flares, our data assimilation scheme substantially increases the success of ``All-Clear'' forecasts, as compared to model climatology.