论文标题
UI层合并:通过视觉学习和边界合并UI层
UI Layers Merger: Merging UI layers via Visual Learning and Boundary Prior
论文作者
论文摘要
随着互联网行业中GUI开发的快速发展,一些有关智能方法的工作试图从UI屏幕截图中生成可维护的前端代码。它可能更适合使用包含UI元数据的UI设计草稿。但是,零散的层不可避免地出现在UI设计草案中,从而大大降低了代码生成的质量。现有的GUI自动化技术都没有检测并合并零散的层以提高生成的代码的可访问性。在本文中,我们提出了UI层合并(UILM),这是一种基于视觉的方法,可以自动检测并将碎片层合并到UI组件中。我们的UILM包含合并面积检测器(MAD)和合并算法的层。 MAD结合了边界先验知识,以准确检测UI组件的边界。然后,合并算法的层可以搜索组件边界内的相关层,并将它们合并为整个部分。我们提出了一种动态数据增强方法,以提高疯狂的性能。我们还构建了一个大规模的UI数据集,用于训练MAD并测试UILM的性能。该实验表明,所提出的方法优于合并面积检测的最佳基线,并且在合并的层上达到了不错的精度。
With the fast-growing GUI development workload in the Internet industry, some work on intelligent methods attempted to generate maintainable front-end code from UI screenshots. It can be more suitable for utilizing UI design drafts that contain UI metadata. However, fragmented layers inevitably appear in the UI design drafts which greatly reduces the quality of code generation. None of the existing GUI automated techniques detects and merges the fragmented layers to improve the accessibility of generated code. In this paper, we propose UI Layers Merger (UILM), a vision-based method, which can automatically detect and merge fragmented layers into UI components. Our UILM contains Merging Area Detector (MAD) and a layers merging algorithm. MAD incorporates the boundary prior knowledge to accurately detect the boundaries of UI components. Then, the layers merging algorithm can search out the associated layers within the components' boundaries and merge them into a whole part. We present a dynamic data augmentation approach to boost the performance of MAD. We also construct a large-scale UI dataset for training the MAD and testing the performance of UILM. The experiment shows that the proposed method outperforms the best baseline regarding merging area detection and achieves a decent accuracy regarding layers merging.