论文标题
通过自动从大型自然主义数据集中自动提取类似的交通场景来揭示人类驾驶行为的可变性
Uncovering variability in human driving behavior through automatic extraction of similar traffic scenes from large naturalistic datasets
论文作者
论文摘要
最近,已经发布了多个自然主义的人类驱动轨迹数据集(例如Highd,Ngsim和Pneuma)。这些数据集已用于研究人类驾驶行为变异性的研究中,例如基于场景的自动驾驶行为(AV)行为,建模驾驶员行为或验证驾驶员模型的验证。到目前为止,这些研究集中在操作水平上的变异性(例如,车道变化期间的速度曲线),而不是战术水平(即是否改变车道)。研究两个级别的可变性对于开发包括多种战术行为的驱动器模型和AV是必要的。为了暴露多层变异性,可以研究人类对同一交通现场的反应。但是,没有任何方法可以自动从数据集中提取类似的场景。在这里,我们提出了一种使用Hausdorff距离的四步提取方法,该方法是集合的数学距离度量。我们对HigD数据集进行了案例研究,该案例研究表明该方法实际上适用。人类对选定场景的反应暴露了战术和操作水平的变异性。通过这种新方法,可以研究操作和战术人类行为的变异性,而无需昂贵且耗时的驾驶模拟器实验。
Recently, multiple naturalistic traffic datasets of human-driven trajectories have been published (e.g., highD, NGSim, and pNEUMA). These datasets have been used in studies that investigate variability in human driving behavior, for example for scenario-based validation of autonomous vehicle (AV) behavior, modeling driver behavior, or validating driver models. Thus far, these studies focused on the variability on an operational level (e.g., velocity profiles during a lane change), not on a tactical level (i.e., to change lanes or not). Investigating the variability on both levels is necessary to develop driver models and AVs that include multiple tactical behaviors. To expose multi-level variability, the human responses to the same traffic scene could be investigated. However, no method exists to automatically extract similar scenes from datasets. Here, we present a four-step extraction method that uses the Hausdorff distance, a mathematical distance metric for sets. We performed a case study on the highD dataset that showed that the method is practically applicable. The human responses to the selected scenes exposed the variability on both the tactical and operational levels. With this new method, the variability in operational and tactical human behavior can be investigated, without the need for costly and time-consuming driving-simulator experiments.