论文标题

用inlabru的贝叶斯霍克斯工艺模型的近似

Approximation of bayesian Hawkes process models with Inlabru

论文作者

Serafini, Francesco, Lindgren, Finn, Naylor, Mark

论文摘要

霍克斯过程是非常流行的数学工具,用于建模现象,表现出\ textit {self Exciting}或\ textit {自我校正}行为。典型的例子是地震发生,野生火灾,干旱,追捕行动,犯罪暴力,贸易交流和社交网络活动。霍克斯在不同领域的广泛使用,要求快速,可重复,可靠,易于编码的技术来实现此类模型。我们提供了一种基于R-Package \ inlabru的使用,以执行霍克斯过程参数的近似贝叶斯推断。反过来,\ inlabru r包装依靠inla方法来近似参数的后部。我们的霍克斯工艺近似基于三部分分别对数模可能的分解,这些分别是线性近似的。线性近似是针对参数后验分布的模式进行的,该分布由基于迭代梯度的方法确定。因此,后验参数的近似是确定性的,从而确保结果的完全可重复性。所提出的技术仅要求用户提供功能来计算分解可能性的不同部分,后者在内部线性地通过R-package \ inlabru进行线性近似。我们提供了基于MCMC方法的\ bayesianetas r包装的比较。这两种技术提供了相似的结果,但是我们的方法需要减少计算时间的两到十倍,具体取决于数据量。

Hawkes process are very popular mathematical tools for modelling phenomena exhibiting a \textit{self-exciting} or \textit{self-correcting} behaviour. Typical examples are earthquakes occurrence, wild-fires, drought, capture-recapture, crime violence, trade exchange, and social network activity. The widespread use of Hawkes process in different fields calls for fast, reproducible, reliable, easy-to-code techniques to implement such models. We offer a technique to perform approximate Bayesian inference of Hawkes process parameters based on the use of the R-package \inlabru. The \inlabru R-package, in turn, relies on the INLA methodology to approximate the posterior of the parameters. Our Hawkes process approximation is based on a decomposition of the log-likelihood in three parts, which are linearly approximated separately. The linear approximation is performed with respect to the mode of the parameters' posterior distribution, which is determined with an iterative gradient-based method. The approximation of the posterior parameters is therefore deterministic, ensuring full reproducibility of the results. The proposed technique only requires the user to provide the functions to calculate the different parts of the decomposed likelihood, which are internally linearly approximated by the R-package \inlabru. We provide a comparison with the \bayesianETAS R-package which is based on an MCMC method. The two techniques provide similar results but our approach requires two to ten times less computational time to converge, depending on the amount of data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源