论文标题
在涉及信号依赖性动力的凯勒 - 塞格消费系统中放松
Relaxation in a Keller-Segel-consumption system involving signal-dependent motilities
论文作者
论文摘要
涉及信号依赖性运动的迁移消费趋化系统的两个放松特征, $$ \ left \ {\ begin {array} {l} u_t =δ\ big(ux(v)\ big),\\ [1mm] v_t =ΔV-uv, \ end {array} \ right。 \ qquad \ qquad \ qquad(\ star)$$在平稳的域中进行了$ω\ subset \ subset \ mathbb {r}^n $,$ n \ ge 1 $:c^0([0,\ infty)$的$ [0,\ infty)$(\ fimation)$(\ fimation)$(for)$ 0(for)$ 0(for)$ 0(即$(c^0(\overlineΩ))^\ star \ times l^\ infty(ω)$相关的无频率类型的初始边界值问题承认全球非常弱的解决方案。除了这一初始放松特性外,还可以看出,在其他假设下,$ ϕ \在c^1([0,\ infty))$和$ n \ le 3 $中,这些解决方案中的每种解决方案都稳定在较大时限制的半平凡的空间均匀稳态。 通过因此应用于任意大小的不规则和部分测量型的初始数据,这首先扩展了($ \ star $)中的全局溶解度的先前结果,这些结果不仅限于初始数据,不仅更常规,而且还适当。其次,这揭示了($ \ star $)中的较大时间行为与涉及功能$ ϕ $的相关退化对应物中的较大时间行为之间有显着差异,$ ϕ(0)= 0 $,即,即某些解决方案可能会均非均无综合的状态,众所周知。
Two relaxation features of the migration-consumption chemotaxis system involving signal-dependent motilities, $$ \left\{ \begin{array}{l} u_t = Δ\big(uϕ(v)\big), \\[1mm] v_t = Δv-uv, \end{array} \right. \qquad \qquad (\star)$$ are studied in smoothly bounded domains $Ω\subset\mathbb{R}^n$, $n\ge 1$: It is shown that if $ϕ\in C^0([0,\infty))$ is positive on $[0,\infty)$, then for any initial data $(u_0,v_0)$ belonging to the space $(C^0(\overlineΩ))^\star\times L^\infty(Ω)$ an associated no-flux type initial-boundary value problem admits a global very weak solution. Beyond this initial relaxation property, it is seen that under the additional hypotheses that $ϕ\in C^1([0,\infty))$ and $n\le 3$, each of these solutions stabilizes toward a semi-trivial spatially homogeneous steady state in the large time limit. By thus applying to irregular and partially even measure-type initial data of arbitrary size, this firstly extends previous results on global solvability in ($\star$) which have been restricted to initial data not only considerably more regular but also suitably small. Secondly, this reveals a significant difference between the large time behavior in ($\star$) and that in related degenerate counterparts involving functions $ϕ$ with $ϕ(0)=0$, about which, namely, it is known that some solutions may asymptotically approach nonhomogeneous states.