论文标题

非热汉尔顿人线性和非线性光学响应:Plexcitons的模型

Non-Hermitian Hamiltonians for Linear and Nonlinear Optical Response: a Model for Plexcitons

论文作者

Finkelstein-Shapiro, Daniel, Mante, Pierre-Adrien, Balci, Sinan, Zigmantas, Donatas, Pullerits, Tõnu

论文摘要

在极地,通过将​​分子过渡与腔内的光模式混合来改变物质的性能。最终的杂化光晶状状态表现出能级变化,在许多分子单元上被定位,并且具有不同的激发态势能景观,从而导致了改进的激子动力学。以前,已得出了非热汉密尔顿人来描述与表面等离子体耦合的分子的激发态(即plexcitons),并且这些算子已成功地用于线性和三阶光学响应的​​描述中。在本文中,我们通过Feshbach操作员严格地得出了非线性光谱响应函数形式主义的形式形式,并将其应用于plexcitons的光谱特征。特别是,我们分析了下面和之上的光学响应,以及用于等离子和分子成分的过渡能而产生的特殊点,并使用双面Feynman图研究了它们的分解。我们发现在线性光谱中的干扰和狂犬分裂之间存在明显的区别,在越过非线性信号时,在线信号的线形对称性发生了质量变化。这一变化对应于哈密顿特征值的对称性中的变化。我们的工作提出了一种模拟电子系统中级别的光学响应的​​方法,并打开了非线性光谱的新应用,以检查非汉密尔顿汉密尔顿人的不同光谱。

In polaritons, the properties of matter are modified by mixing the molecular transitions with light modes inside a cavity. Resultant hybrid light-matter states exhibit energy level shifts, are delocalized over many molecular units and have a different excited-state potential energy landscape which leads to modified exciton dynamics. Previously, non-Hermitian Hamiltonians have been derived to describe the excited states of molecules coupled to surface plasmons (i.e. plexcitons), and these operators have been successfully used in the description of linear and third order optical response. In this article, we rigorously derive non-Hermitian Hamiltonians in the response function formalism of nonlinear spectroscopy by means of Feshbach operators, and apply them to explore spectroscopic signatures of plexcitons. In particular we analyze the optical response below and above the exceptional point that arises for matching transition energies for plasmon and molecular components, and study their decomposition using double-sided Feynman diagrams. We find a clear distinction between interference and Rabi splitting in linear spectroscopy, and a qualitative change in the symmetry of the lineshape of the nonlinear signal when crossing the exceptional. This change corresponds to one in the symmetry of the eigenvalues of the Hamiltonian. Our work presents an approach for simulating the optical response of sublevels within an electronic system, and opens new applications of nonlinear spectroscopy to examine the different regimes of the spectrum of non-Hermitian Hamiltonians.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源