论文标题

$ \ MATHCAL {G} $ - $μ$ -DISPLAYS和本地Shtuka

$\mathcal{G}$-$μ$-displays and local shtuka

论文作者

Bartling, Sebastian

论文摘要

比较了当地Shimura-Varieties积分模型的两种方法:使用$ \ Mathcal {g} $ - $ $ $ $ $ $ $ $ $ $ $ $ - 使用本地混合特征特征shtuka的bültel-pappas的方法。作为一种应用,验证了Bültel-Pappas模量通用纤维问题的钻石问题,并证明了Rapoport-Pappas的局部代表性猜想。这些方法适用于在斜坡上的一定条件下,以及$ p \ neq 2; $尤其是特殊组的所有未受到的本地shimura-data。

Two approaches to the construction of integral models of local Shimura-varieties are compared: that of Bültel-Pappas using $\mathcal{G}$-$μ$-displays and that of Scholze using local mixed-characteristic shtuka. As an application, the representability of the diamond of the generic fiber of the Bültel-Pappas moduli problem is verified and a local representability conjecture of Rapoport-Pappas is proven. The methods apply to all unramified local Shimura-data under a certain condition on slopes and if $p\neq 2;$ thus in particular also to exceptional groups.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源